

AL al-Bayt University

Prince Hussein Bin Abdullah

College for Information Technology

Computer Science Department

FLAME Clustering and Cuckoo Search Selection for Building a New

Intrusion Detection Model

اللهب العنقودية و اختيار البحث الواقوق لبناء نموذج جديد لكشف التسلل

By

Kawthar Ahmad Alzboon

Supervisor Dr. Jehad Q. Al-Nihoud Co-Supervisor Dr. Wafa' S. AL-Sharafat

2017

i

تفويض

انا كوثر احمد عقلة الزبون، أفوض جامعة آل البيت بتزويد نسخ من رسالتي للمكتبات او المؤسسات او الهيئات او الاشخاص عند طلبهم حسب التعليمات النافذة في جامعة.

التوقيع:

التاريخ:

اقرار والتزام بقوانين جامعة آل البيت وأنظمتها وتعليماتها

الرقم الجامعي :١٣٢٠٩٠١٠١٥	أنا الطالب: كوثر احمد عقلة الزبون
الكلية: تكنولوجيا المعلومات	التخصص: علم حاسوب

اعلن بانني قد النزمت بقوانين جامعة آل البيت وأنظمتها وتعليماتها السارية المفعول المتعلق باعداد رسائل الماجستير والدكتوراه عندما قمت شخصيا بأعداد رسالتي بعنوان:

FLAME Clustering and Cuckoo Search Selection for Building a New Intrusion Detection Model

وذلك بما ينسجم مع الأمانة العلمية المتعارف عليها في كتابة الرسائل والأطاريح العلمية. كما انني أعلن بان رسالتي هذة غير منقولة او مستلة من رسائل او أطاريح او كتب او ابحاث او أي منشورات علمية تم نشرها او تخزينها في اي وسيلة اعلامية، وتاسيسا على ما تقدم فأنيي اتحمل المسؤولية بأنواعها كافة فيما لو تبين غير ذلك بما فيه حق مجلس العمداء في جامعة آل البيت بالغاء قرار منحي الدرجة العلمية التي حصلت عليها وسحب شهادة التخرج مني يعد صدورها دون ان يكن لي أي حق في التظلم او الأعتراض او الطعن بأي صورة كانت في القرار الصادر عن مجلس العمداء بهذا الصدد.

التوقيع:

التاريخ:

FLAME Clustering and Cuckoo Search Selection for Building a

New

Intrusion Detection Model

By:

Kawthar Ahmad Alzboon

Supervisor: Dr. Jehad Q. Al-Nihoud

Co-Supervisor: Wafa' S. AL-Sharafat

This Thesis was Submitted in Partial Fulfillment of the Requirements for the Master's Degree in Computer Science Deanship of Graduate Studies

Al al-Bayt University

COMMITTEE DECISION

This Thesis (FLAME Clustering and Cuckoo Search Selection for Building a New

Intrusion Detection Model) was Successfully Defended and Approved on 22/5/2017.

Examination	committee
<u>Signature</u>	
Dr. Jehad Q. Al-Nihoud, (Supervisor) Assoc. Prof. of Computer Science	
·	
Dr. Wafa' Al-Sharafat, (Co-Supervisor)	
Assoc. Prof. of Computer Science	
Dr. Omar Shatnawi, (Member)	
Assoc. Prof. of Computer Science	
Dr. Khaled Batiha, (Member)	
Assoc. Prof. of Computer Science	
Assoc. Prof. of Computer Science	
(Hashemite University)	

v

Dedication

To my parents.

The reason of what I am today. There are no words that can express how grateful I am for your unconditional love, encouragement, and prayers of the day and night.

To my brother and sisters.

You all have been a great source of support and encouragement.

Thank you all.

ACKNOWLEDGEMENT

First of all, plentiful thanks to Allah the almighty the most merciful for enabling me to fulfill such achievement. I would like to express my deepest appreciation and gratitude to my main supervisor Dr. Jehad Odeh, for his deep knowledge, patience, kindness and encouragement. I am also indebted in preparation of this thesis to my co-supervisor Dr. Wafa' AL-Sharafatfor her support, guidance, persistent help and especially her patience during the preparation of this thesis.

I am also grateful to all the lecturers at the Computer Science Department at Al Al-Bayt University.

I would like to take a moment to express my deepest appreciation and gratitude to my father, who is a true inspiration for my life. I know I would never be where I am today without your guidance, support, endless love and your faith in me. I am so grateful that you are my father.

LIST OF CONTENTS

v
vi
vii
viii
x
xii
xvi
xvii
1
1
4
4
5
5
7
7
7
10
19
19
22
25
25
25
26
28
28
31

Introduction
Feature Filtration
Chapter Experimental results and Evaluation
Introduction
Performance Measurements
Data Collection
Experiments
Experiment 2:FLAME Features Flirtation52
roposed Solution System64
Impact Before and After Using the filtration (FLAME) process67
Comparative Study68
Chapter Conclusions and Future Work78
Conclusions
Future Work
References:79
Abstract(Arabic)
Appendix90

List of Figures

Figure (2.1): Work Flow ZCS	7
Figure (2.2): Components of XCS	8
Figure (2.3): Pseudo Code	9
XCS	
Figure (2.4): Flow Chart	11
GA	
Figure (2.5): Pseudo Code Cuckoo Search	16
(CS)	
Figure (2.6): FLAME clustering	20
algorithm	
Figure (4.1): Proposed System	28
Model	
Figure (4.2): Pseudo Code GA AND	29
CS	
Figure (5.1): Crossover Probability and Number of optimizations	37
(Generation)	
Figure (5.2): Mutation Probability and Number of optimizations	38
(Generation)	
Figure (5.3): Detection Rate with Number of optimizations	39
(Generation)	
Figure (5.4): Accuracy with Number of optimizations (Generation)	40
Figure (5.5): Detection Rate with Number of solutions	41
(Nests)	
Figure (5.6): Accuracy with Number of solutions (Nests)	42

Figure (5.7): Detection Rate with Abandoned		
Probability		
Figure (5.8): Accuracy with Abandoned Probability	44	
Figure (5.9): Crossover probability, Detection	46	
Rate		
Figure (5.10): Number features, Detection	54	
Rate		
Figure (5.11): Number Features, False alarm	55	
rate		
Figure (5.12): comparative study of the methods, the number features,	57	
detection rate.		

LIST OF TABLES

Table	Page
Table5.1:FeaturesoftheKDD'99	35
Dataset	
Table 5.2: Crossover Probability and Number of optimizations	36
(Generation)	
Table 5.3: Mutation Probability and Number of optimizations	38
(Generation)	
Table5.4:DetectionRatewithNumberofoptimizations	39
(Generation)	
Table5.5:AccuracywithNumberofoptimizations	40
(Generation)	
Table5.6:DetectionRatewithNumberofsolutions	41
(Nests)	
Table5.7:AccuracywithNumberofsolutions	42
(Nests)	
Table5.8:DetectionRatewithAbandoned	43
Probability	
Table5.9:AccuracywithAbandoned	43
Probability	
Table 5.10: Crossover probability, Detection Rate, Accuracy and False	45
	4.0
Table 5.11: Mutation probability, Detection Rate, Accuracy and False	46
alarm	

xii

Table	5.12:	Atta	ick	types	an	d	the	46
sizes								
Table	5.13:	List	of	attacks		(cate	egory	47
wise)								
Table 🗄	5.14: Featur	es Sele	cted	for DoS,	Probe,	U2R,	R2L	47
attacks								
Table 5	.15:Number o	of optimiz	ations	, Detection	Rate, A	ccuracy	and	47
False	alarn	า	for	5	selected		18	
features								
Table 5.	16: Number	of optim	izatior	ns, Detection	n Rate, A	ccuracy	and	48
False	alarm	fc	or	selecte	d		18	
features								
Table 5.	17: Number	of optimiz	ations	, Detectior	n Rate, A	ccuracy	and	48
False	alarn	า	for	S	selected		20	
features								
Table 5.	18: Number o	of optimiz	ations	, Detection	Rate Acc	uracy, I	alse	49
alarm	for		sel	ected			20	
features								
Table 5.	19: Number	of optimi	zation	s, Detectior	n Rate A	ccuracy	and	49
False	alarm	for			select	ed	25	
features								
Table 5.	20:Number o	ⁱ optimiza	ations,	Detection F	Rate, Acc	uracy, I	alse	50
alarm for	r							
selected							25	
features								

Table 5.21:Number of solution optimizations, Detection Rate, Accuracy 51 False for 18 and alarm selected features..... Table 5.22:Number of solution optimizations, Detection Rate, Accuracy 51 and False alarm for selected 20 features..... Table 5.23: Number of solution optimizations, Detection Rate, Accuracy 52 and False alarm for selected 25 features..... Table 5.24:Number features. Detection Rate. Index 52 Features..... Table 5.25: Number Features and 53 Accuracy..... Table 5.26: Number Features, False alarm and Index 55 Features..... Table 5.27: Number of optimizations, Accuracy and False 55 alarm..... Table 5.28: Parameters. Before filtration and After filtration 55 (FLAME)..... Table 5.29: comparative study of the methods, the number features and56 detection rate... Table 5.30: comparative study of the methods, the number features, 56 accuracy..... Table 5.31: Methods, Features Number, Detection Rate values for Each 56 Type of Attacks Table 5.32: Methods, Number Features and Accuracy of Each Type of 57 Attacks.....

rate Table 5.34:Methods Mutation probability Detection 58 rate Table 5.35:Methods Crossover probability 58 Accuracy Table 5.36:Methods Mutation probability 59 Accuracy Table 5.37:Methods, 60 FPR	Table	5.33:Methods	Crossover	probability	Detection	57
rate Table 5.35:Methods Crossover probability 58 Accuracy Table 5.36:Methods Mutation probability 59 Accuracy Table 5.37:Methods, 60	rate					
Table5.35:MethodsCrossoverprobability58Accuracy5.36:MethodsMutationprobability59AccuracyTable5.37:Methods,60	Table	5.34:Methods	Mutation	probability	Detection	58
AccuracyTable5.36:MethodsMutationprobability59Accuracy5.37:Methods,60	rate					
Table5.36:MethodsMutationprobability59AccuracyTable5.37:Methods,60	Table	5.35:Methods	s C	Crossover	probability	58
Accuracy	Accuracy.					
Table 5.37:Methods, 60	Table	5.36:Methods	S	Mutation	probability	59
	Accuracy.					
FPR	Table				5.37:Methods,	60
	FPR					

List of abbreviations

Abbreviation	Expression		
IDS	Intrusion Detection system		
LCS	Learning Classifier system		
XCS	Extended classifier system		
GA	Genetic Algorithm		
CS	Cuckoo Search		
RL	Reinforcement Learning		
DoS	Denial of Service		
DR	Detection Rate		
FLAME	Fuzzy clustering by Local Approximation of		
	Memberships		
SVM	Support Vector Machine		
ANN	Artificial Neural Network		
KDD99	Knowledge Discovery and Data Mining		
ACC	Accuracy		
FPR	False Positive Rate		
FAR	False Alarms Rate		

Abstract

Recently, security has become an important challenge for entire networks. Networks have been hacked by unauthorized users by which their user data were accessed. Many methods have been applied to network security; such as firewalls, encryption, and antivirus. Intrusion detection system is one of these methods which monitors the network system and identifies the intrusions over the network.

This research is concerned with developing a model for intrusion detection systems. This model contains two phases; the first phase, focuses on feature filtration using FLAME algorithm, that has reduced the number of features space. The second phase, the extended classifier system (XCS), which can be implemented by providing an enhanced genetic algorithm operation. This enhancement is based on using a cuckoo search for selection in genetic algorithm along with different crossover and mutation probability instead of the traditional genetic algorithm.

The outcomes of the proposed system indicate that the performance of the developed model results with improved results compared to previous intrusion detection systems. The results show that an improvement of the detection and false alarm rate were achieved.

Chapter Introduction

Introduction

Internet users are increasing over worldwide and giving the chance for attackers to increase their attacks to violate the systems resources and capabilities. Different methods have been applied and developed to discover illegal access, probing and any attack attempts that support end-users to reject or accept the incoming request (Zhao, 2007), one of these methods is firewalls and intrusion detection system that have been applied to prevent the traffic of unwanted incoming and outgoing traffic of data and intrusion detection systems (Rehman, 2003).

Intrusion detection system (IDS) focused on an intruder who can steal or change user system data (Raut, Singh, 2014). Anderson in 1980 suggested the idea of the IDS by designing a model that monitors the system. The model was based on the user behavior in detecting anomalies (Anderson, 1980).

Garden and others in 2014 stated that IDS are classified into data source or detection method:

1) Data Source

• Host-based intrusion detection system (HIDS): it receives information from an individual host and the operating system commonly traces and

• check records system. It is normally applied as an agent that is found on each host to be observed for the analysis of event logs, major system files, or the network looking for irregular changes or models for suspicious activities of traffic records (Yu Yingbing, 2012).

• Network-based intrusion-detection system (NIDS): it controls the traffic over the network packets and requests. So NIDS analyze network packets from those that appear unusual and flags them. It also can be applied over gathered data from various hosts for recognizing signs of infiltration (Yu Yingbing, 2012).

2) Detection Method

Network-based intrusion-detection system technique consists of two main categories:

✤ Misuse Intrusion Detection: which also known as the signature-based intrusion detection system, where it is based on the signatures of the attack, and it is established as generated alarms. These include attack signatures or pattern of certain movement or activity on the basis of normal activity known as intrusive (Hashem, 2013).

✤ Anomaly Intrusion Detection: which identifies a new type of intrusions and the infusion of normal use. Anomaly detection techniques are useful for unknown contra or new attacks due to the lack of previous knowledge about the fixed intrusions needed (Hashem, 2013).

Anomaly intrusion detection has been classified according to based detection techniques. One of these techniques is machine learning which can be classified into:

- Neural networks: systems have learnt to search for next commands based on sequences of previous commands by a certain user. It suggests better solutions for problems of modeling user behavior in anomaly detection because they do not need any explicit user mode.
- **2.** Fuzzy logic: this system is in charge of managing input parameters and input data invalidity.
- **3.** Support vector machines: the system is a good generalized natural system with the capability to overcome the execration of dimensions (Yao, et al., 2006).
- Learning classifier system: a set of rules (population of classifiers) guiding a performance in an unknown environment (Alsharafat Wafa, 2014).

NIDS has four major attack categories (Kumari, Shrivastava, 2012):

- The Denial of Service (DoS): which is defined as "an attacker who makes some computing or memory resources too busy for authorized users to access". E.g: SYN flood, Smurf. (Shafi, 2006).
- Remote to User (R2L): which is defined as " an attacker who send packets to a machine on a network, then exploit its ease of access to illegally gain local access as a user." E.g: Password guessing (Kumari, Shrivastava, 2012).

- 3. User to Root (U2R): which is defined as "the attack are corruptions in which hackers start the system with a normal user account and attempt to misuse vulnerabilities in the system to gain super user rights". E.g: Perl, xterm (Paliwal, Gupta, 2012).
- 4. Probe: which is defined as "Hosts and ports probes as predecessors to other attacks. Attacker scans the network in order to collect data or locate known vulnerabilities". E.g: Port scans, IP sweep (Shafi, 2006).

Motivation

Computer networks have been facing enormous security threats in which a new types of network attacks have appeared. A security techniques that are adaptable and flexible in order to protect computers from being hacked has become a global challenge. The intrusion detection system is an important technique to be applied in order to protect systems and networks against malicious activities. Anomaly based intrusion detection system is aimed to detect, prevent and report unauthorized activity in computer networks.

Problem Statement

Networks usage worldwide has undergone a large evolution, accompanied with an increasing number of hackers or attackers. Networks have a set of security needs,

which concern about increasing the network reliability and availability, reducing the abuse and malicious attacks potentiality.

We need a system that has a high infiltration detection rate and it can deal with any new cases of attack. For previous systems, the DR is not high.

In order to have a safe and secure network environment; this study will show multiple artificial techniques to detect intrusions relying on an increased Detection Rate (DR) and decreased False Alarm Rate (FAR).

Main Contributions

Extended Classifier System (XCS) used a Genetic Algorithm (GA). GA is an evolutionary method that has a set of operations; selection, crossover and mutation. GA is used to generate new classifiers from existing classifiers.

The contribution of this research can be divide into:

- 1. Using the cuckoo search for selection operation in GA.
- 2. Using FLAME features filtration in XCS.

Structure of the Thesis

This study aims to develop a model of IDS in the extended classifier system. The rest of the thesis is categorized as follows:

Chapter 1: Introduction: In this chapter; introduction about a model, motivation, contributions, and problem statement.

Chapter 2: Research Background: In this chapter; the main concepts of the learning classifier system, XCS, GA, cuckoo search algorithm (CS), and Fuzzy clustering by Local Approximation of Memberships (FLAME) are illustrated.

Chapter 3: **Literature review**: in this chapter; we discuss the results of the comprehensive literature studies that formed this study.

Chapter 4: Methodology: this chapter presents the implantations of the proposed method.

Chapter 5: Experimental results and Evaluations: this chapter presents the evaluation of the result of the method implemented in this research and shows a comparison with results from some previous research.

Chapter 6: Conclusion and Future work: this chapter presents the final conclusion and the future work for the proposed work.

Chapter Research Background

Introduction

This chapter introduces the environment of the XCS for performing detection engine and the FLAME algorithm for features filtration. In XCS, several algorithms will be used in the model such as; GA and a cuckoo search algorithm which will be presented in this chapter.

Learning Classifier System

Learning Classifier System (LCS) is considered a machine learning system, which was introduced by Holland in 1976 (Alsharafat, 2013). LCS includes rules that are called classifiers. A classifier system could learn and classify messages from the environment into general sets which depends on the type of LCS (Richards, 1995).

LCS has three major parts as follows (Bensefi):

- 1. Rule base: that signifies an adaptive, reactive, and evolutionary knowledge base for the LCS
- 2. Reinforcement Learning (RL): that manage of this knowledge's, adaptability base

3. GA: that manages the evolution.

LCS is applied to handle problems of interaction with the environment by detecting intrusion attempts (Shafi et al, 2007). Intrusion detection has been detected activities that break the security policy of networks (Kumari, Shrivastava, 2012).

LCS has three major categories:

1) Strength based LCS, which is called Zeroth Classifier Systems (ZCS). The ZCS was proposed by Wilson in 1994 (Sigaud, Wilson, 2007), which it has a condition and an action part where each a classifier comprises one evaluation variable that includes its accumulated reward estimation brought by its firing and fitness for the process of population evolution (Sigaud, Wilson, 2007). Figure (2.1) shows the ZCS work flow:

1- Initialization

- Initialize population of classifiers $R = \{R1, R2, ..., RN\}$
- 2- Performance
- Receive a binary encoded input.

• Determine an appropriate response based on the rules whose condition matches the input .

• Produce a classification decision and update rules' fitness values.

3- Reinforcement

In case of successful classification, apportion a scalar reward R to the system classifiers according to a reinforcement scheme .

4- Discovery

Change one individual of the classifier population by applying GA.

Figure (2.1): Work Flow ZCS (Tzima, et al., 2009)

2) Anticipation based LCS, which is called Anticipatory learning classifier systems (ALCS). The ALCS rules comprise three parts; condition, action and effect. The accuracy of prediction effects depends on a particular action under a particular condition. The ALCS is concerned with what will happen after executing an action (Alsharafat, 2013).

3) Accuracy based LCS, which is called Extended Classifier System (XCS). In XCS, rule predicts a particular reward and has a particular fitness. It retains rules that predict lower rewards

as long as those predictions are accurate. In this thesis, we will shed the light on the extended classifier system (XCS) because it widely used in different applications as in IDS.

Extended Classifier System (XCS)

XCS is the most popular LCS and it is widely used in different applications as in IDS (Bernad´oMansilla, Garrell-Guiu, 2003). XCS was introduced by Wilson in 1995, which classified as a rule based system where rules populations are called classifiers (Shafi et al., 2006). Each rule contains two parts: condition and action.; condition part ("the body of the rule") (Dam, Abbass, 2008) is represented in binary system as :{ 0,1, #}; the symbol # means don't care. The action part ("the prediction of the classifier") (Dam, et al., 2008) is presented as (0,1) (Bernad´oMansilla, Garrell-Guiu, 2003).

XCS is based on two factors: RL and GA. RL (or credit assignment) which allocates the incoming reward from the environment of the classifier which is responsible for the reward received (Holmes, et.al, 2002). RL is designated to know how the classifier will be useful in the future reward and to feed the development of better rules (Lanzi, 2008). GA discovers the search space by generating a new rule into the system (Dam et al, 2005). Once a new rule is generated; the population gets scanned to examine if the new classifier already exists or not. So, if a new classifier not a duplicate rule than the new rule will be added to the population. Also, the number of existing is incremented by one. The main components of XCS are shown in figure 2.2.

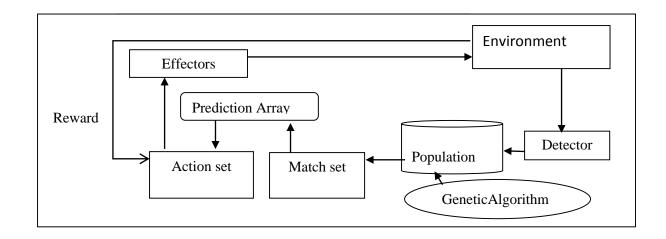


Figure (2.2): Components of XCS (Alsharafat, W., 2013)

- 1. **Detector:** receives inputs from the environment message that represents the network traffic feature. These features are classified into important features that play a major role to detect attacks. In opposition, irrelevant features replaced by #. Features consist of a condition part that is utilized to detect network attacks.
- 2. **Match set [M]:** a set of classifiers in which conditions part must match the condition part of input features of the environment.
- Prediction Array: this is formed for each action in [M] depending on its fitness-weighted average of the prediction of rules in each [A] (Bull, kovacs, 2005).
- 4. Action set [A]: a set of classifiers in [M] that support the action chosen.
- 5. **ffector:** it fires the rule action to the environment. The result can be normal, Probe, U2R, R2L or DOS. Figure 2.3 shows the pseudo code XCS (Butz., et.al, 2007):

- Initialization Population of rules.
- Match set formed in response from environment
 - Action selected from match set.
 - 0 Highest fitness
- Rules advocating the same action form the action set
- Receive a reward r from the environment for executing the specified action
- Update the predicted reward for each rule in the action set

 $p \leftarrow p + \beta (r-p)$

- Update the predicted error for each rule in the action set
 - $\varepsilon \leftarrow \varepsilon + \beta (|\mathbf{r} \mathbf{p}| \varepsilon)$
 - β = estimation rate 0
- If $\varepsilon < \varepsilon_0$, set prediction accuracy k=1
- Otherwise, set prediction accuracy
 - $k = \alpha(\epsilon_0/\epsilon)^v$ for some $\alpha, v > 0$ 0
- Calculate relative prediction accuracy
 - k' = k(rule) / (sum of k for all rules in action set)
 - Update the fitness of each rule

• $f \leftarrow f + \beta (k' - f)$

- α = learning rate
- β = estimation rate

Figure (2.3): Pseudo code XCS (Butz., et al., 2007)

More ever, each classifier keeps certain additional parameters (Butzi, Wilson, 2001):

- The prediction error (ϵ): estimates the errors made in the predictions.
- The prediction p: estimates (keeps an average of) the payoff expected if the classifier matches and its action is taken by the system.
- The fitness f: denotes the classier's fitness.
- β: is the learning rate for p; ε; f.
- a, ε , and v: are used in calculating the fitness of a classifier.
- k: prediction accuracy.

GA is an empirical search algorithm that depends on ideas of natural selection. GA is employed in intelligent exploitation of a random search with a defined search space in order to solve a problem (Goldberg, Holland, 1988).

GA is based on the idea of the existence of the fittest, where a population is produced to create innovative search strategies. Initially, GA consists of a set of individuals called population, which is used to represent possible solutions for the specified problem. Then by performing selection methods, crossover and mutation; GA will iteratively create a new individual from the old population (called a generation) (Mitchell, 1999).

GA is used to solve complex problems in various fields. A GA uses genetic concepts to encode problems into a generation (a group of individuals), then it simulates the generation evolution by applying mathematic genetic operators (selection, crossover and mutation) to define the best solution (individual) over a finite number of generations. The definition of "best" is accompanied with a fitness function that describes a given individual and decides if it is better or worse than other individuals. These steps are then repeated until a termination condition is fulfilled (Mitchell, 1999).

GA steps will be presented in more details in the next section. General (Simple) GA is illustrated in Figure 2.4.

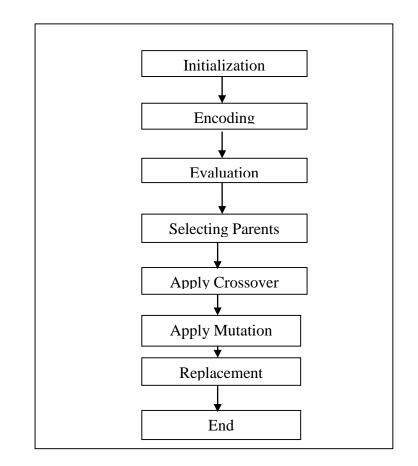


Figure (2.4): GA flow chart(Mitchell, 1999)

2.4.1 GA elements

GA comprises a set of elements:

1. Population

The basic terms of the population of individuals are gene and chromosome. A population is a group of individuals of a definite size. Individuals of a population are sets of task parameters coded in the form of chromosomes,

that means solutions; or else, they are called search space points. Individuals are generated in a random manner to represent initial values for present generation which represents an initial search space for GA.

2. Evaluation

The fitness function is adopted to evaluate the chromosome fitness in which the fitness value shows the quality of each chromosome (Alabsi, Naoum, 2012).

3. Encoding

Encoding is one of the most important methods in GA in order to represent suitable solutions. Choosing the right representation method improves the effectiveness of GA in solving problems, there are different ways for encoding; such as binary, real or integer (Mitchell, 1999).

4. Selection

Selection is the process of choosing individuals from existing populations as parents, in order to implement crossover and mutation on them to reproduce new individuals (offspring or child). Then, the decision to be taken is how can individuals be selected from a current generation. By applying Darwin principle "survival of the fittest"; individuals with highest fitness values will take the advantage to live for a long time and cross over with low fitness individuals.

Different selection methods are used in this scope: roulette wheel selection (RWS) and ranking selection. The RWS is a selection method that selects high probability parents with high fitness values. While, ranking selection is an alternative method which prevents fast convergence and slow finishing problems. There are different ways to perform this method, but the simplest of all is a linear ranking method (Alabsi, Naoum, 2012).

5. Replacement

Comparison between several chromosomes is conducted in order to choose the best. Replacements include; binary tournament and triple tournament. Binary tournament takes two chromosomes and depending on their fitness function, it chooses the best one and ignores the second. Triple Tournament replaces the worst two among three chromosomes by considering the chromosome with the highest fitness value (Alabsi, Naoum, 2012).

2.4.2 GA operator

GA comprises two main types of operators to be used to reproduce new individuals in next generations. These operators are crossover and mutation.

1. Crossover

Crossover is one of the main characteristics distinguishing GA from another revolution techniques. A crossover is the process of genes exchange between two individuals (chromosomes) to reproduce new individuals that inherent

their parent's behavior(Goldberg, Holland, 1988). The crossover was used at first to represent the search in the parameter space. Then it is concerned with finding a way to keep the information stored by parent chromosomes as long as possible as they are considered to be good chromosomes that have resulted from process selection (Mitchell, 1999),(Goldberg, Holland,1988). Crossover decision implementation, for all genes, depends on the value of crossover probability (*P*c).

Crossover probability is how often a crossover is performed if there is no crossover, in which, the offspring is in an exact copy of its parents, and then the offspring is made by applying crossover. Crossover methods determination is dependent on encoding method and problem type (Nacⁱⁱ Khodor 2011) $(k_i(f_i) = f')/(f_i) = \bar{f}$

$$p_c = \begin{cases} k_1(f_{max} - f')/(f_{max} - \bar{f}) & \text{if } f' \ge \bar{f} \\ k_3 & \text{otherwise} & \dots \dots (2.1) \end{cases}$$

Where: $k1, k3 \le 1.0$ are constants, *f* is the fitness of the individual, *fmax* is best existing fitness, *f'* is the largest fitness of the parents that are selected for crossover, and *f*⁻ is the average fitness of the population (Nadi, Khader, 2011).

Various crossover strategies are present:

a. Single crossover position

This is the simplest method for crossover. Crossover determination can be accomplished by using crossover probability and selecting random position k, where; $k \in \{1, 2, ..., I-1\}$, I= is chromosome length) to produce two Children (chromosomes) by intersecting parents' chromosomes at k position (Mitchell, 1999).

b. Two-point crossover

This strategy executes better than single point crossover or to some extent they are considered to be equivalent. Crossover can be accomplished by using crossover probability and selecting random position k_1 , k_2 (k_1 , $k_2 \in \{1, 2, ..., I-1\}$, $k_1 < k_2$) where the genes between k_1 and k_2 are switched (Goldberg, et al., 1988).

c. Uniform crossover

Uniform crossover varies from other strategies, it is as genes are randomly exchanged by using probability.

2. Mutation

Random changing in genes in individual chromosome is applied; to avoid local maxima and produce new individuals that differ from the existing for more exploration of the search space. The decision for implementing mutation, for all genes, depends on the value of mutation probability (*Pm*).

Mutation probability can be defined as how frequent will a part of a chromosome mutate(Nadi, Khader, 2011). If no mutation is achieved; the offspring is then considered after the crossover without any changes. If mutation is 100% in which the whole chromosome is changed (Goldberg, Holland, 1988): the below equation of mutation probability (pm) is appli $p_m = \begin{cases} k_2(f_{max} - f)/(f_{max} - \bar{f}) & \text{if } f \geq \bar{f} \\ k_4 & \text{otherwise} \end{cases}$ (2.2)

Where k2, k4 \leq 1.0 are constants, *f* is the fitness of the individual, *fmax* is best existing fitness, *f'* is the largest fitness of the parents that are selected for crossover, and *f*⁻ is the average fitness of the population (Nadi, Khader, 2011).

Cuckoo Search

Metaheuristic algorithms are inspired by natural phenomena as such as; partial swarm optimization (PSO) which was inspired by fish and swarm intelligence and cuckoo search has brood parasitism behavior of the cuckoo birds. The major two properties of metaheuristic algorithms are selection of fitness, which depends on searching around for the present solution and selecting the best, and adaptation to the environment, in which the algorithm explores the search space.

Cuckoo search (CS) is an evolutionary optimized algorithm that was first presented by Xin-She Yang and Suash Deb in 2009 (Yang, Deb, 2009). Cuckoo search has a brood parasitism behavior of the cuckoo species with the Lévy flight behavior. These birds lay aside their eggs in a host nest and imitate external properties of host eggs such as color. In this strategy is possible for the host to throw away the cuckoo's egg or leave its nest to build a new one in another place (Moghadasian, Hosseini, 2014). CS has two types of behavior; cuckoo breeding behavior and Lévy flight behavior. The next sections detail these types.

Cuckoo Search Behavior

2.5.1.1 Cuckoo Breeding Behavior

The generation process of the cuckoo search algorithm depends on three rules:

- 1. Each cuckoo selects a random nest where it lays one egg at a time.
- 2. High quality egg nests will proceed to the next generation.

3. A fixed number of host nests are available, where, each host is able to detect a strange egg with a probability *p*a [0,1], and also, the host bird can discard the egg or leave the nest to construct a new nest in another place. (Kanagaraj, et al., 2013).

2.5.1.2 Lévy flight Behavior

The Levy flight considers a random walk, that depending on the step size. The step size is mainly subject to heavy-tailed probability distribution (Valian, et al., 2011), (Roy, Chaudhuri, 2013). Levy flight was introduced by Benoit Mandelbrot by applying a special definition for the distribution of step sizes. Levy flight is utilized to designate a separate network rather of a continuous space (Roy, Chaudhuri, 2013). Cuckoo Search and Lévy flight (CS) were reviewed according to the pseudocode

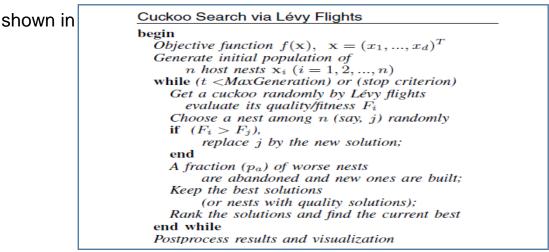


Figure (2.5): Pseudo code Cuckoo Search (Yang, Deb, 2009)

A new solution is denoted⁽⁺⁾ by x and a cuckoo is represented by i, then a Levy Flight is performed as in equation (2.3) (Guerrero, et al., 2015):

$$X_{i}^{(+1)} = X_{i}^{(\lambda)} + \alpha \oplus L'evy(\lambda) \qquad \dots (2.3)$$

Where: current solution is denoted by X , a step size is represented by α ; it should be relevant to the scales of the problem of integest, where $a \ge 0$ and the product means an entry-wise multiplications (Guerrero, et al., 2015). Levy flight is a random walk while the random step length is drawn from a Levy distribution (Valian, 2011).

$$L'evy \sim u = t - \lambda, (1 < \lambda \le 3)$$

2.4

Where *t* is The number of a current generation (Time), and λ is a constant between 1 and 3 (Guerrero, 2015).

Levy distribution possesses an infinite variety with an infinite mean along with a power-law step size of a heavy tail (Roy, Chaudhuri, 2013). Levy walk generates some new solutions around the best reached solution so far, which will speed up local search (Guerrero, 2015). But, a substantial fraction of new solutions should be produced by the far field random distribution, whose locations must be far enough from the current best solution; this will in turn guarantee that the system will not be trapped within a local optimum (a solution that is optimal (either maximal or minimal) within a neighboring set of candidate solutions(Kosheleva,Kreinovich, 2016)), (Yang, Deb, 2009).

FLAME Clustering

The main idea of clustering data is to reduce the amount of data by categorizing or grouping similar data items together (Barbakh, et al., 2009). There are different methods to be used for data clustering. Fuzzy Clustering by Local Approximation of Memberships (FLAME) is one of the known clustering algorithms; it identifies clusters according to the dense portion of the dataset. FLAME is based on the neighborhood relationships between objects that were applied to force neighboring objects memberships membership in fuzzy space (Sampath, Prabhavathy, 2015). FLAME data clustering algorithm runs through three steps (Fu, Medico, 2007):

Step 1: Extraction of structure information

- (a) Create a neighborhood graph to connect each object to its K-Nearest Neighbors (KNN);
- (b) Estimate a density for each object based on its proximities to its KNN;
- (c) Objects are classified into 3 types:
 - 1. Cluster supporting object (CSO): an object with higher density than all its neighbors.
 - 2. Cluster outliers: an object with lower density than all its neighbors, and even lower than a predefined threshold.
 - 3. The rest.

Step 2: Assigned fuzzy membership by local approximation

(a) Initialization of fuzzy membership:

- 1. Each CSO is assigned with fixed and full membership to itself to represent one cluster.
- 2. All outliers are assigned with fixed and full memberships to the outlier group.
- 3. The rest are assigned with equal memberships to all clusters and the outlier group.

(**b**) Then the fuzzy memberships of all of the 3 types of objects are updated by a converging iterative procedure called Local/Neighborhood Approximation of Fuzzy Memberships; in which the fuzzy membership of each object is updated by a linear combination of the fuzzy memberships of its nearest neighbors.

The weights defining how much each neighbor, will contribute to an approximation of the fuzzy membership of that neighbor is calculated as *waxy* with (Fu, Medico, 2007).

 $\sum_{y \in N(x)} Wxy = 1 \qquad \dots (2.5)$

 Local/Neighborhood Approximation Error (LAE/NAE), which is defined as the following(Fu, Medico, 2007):

$$E({p}) = \sum_{x \in X} ||p(x) - \sum_{y \in N(x)} -W_{xy} P(y)||^2 \qquad \dots (2.6)$$

✤ In FLAME, Eq (2.5) is minimized to calculate a set of memberships vectors under some constraints (in addition to the natural constraints on fuzzy membership vectors) derived in the first step, that is, fixing membership vectors of CSOs and outliers to avoid the trivial solutions where all p(x) are the same.

 The NAE can be lessened by solving the following linear equation with a unique solution that is the unique global minimum of NAE with a zero value:

$$P_{k}(x) - \sum_{y \in N(x)} - W_{xy} Pk(y) = 0, \forall x \in X, k = 1, ..., M \quad(2.7)$$

✤ In which M is the number of CSOs plus one (for the outer group). Following the iterative procedure can be applied to solve these linear equations: $(x) = \sum_{y \in N(x)} - Wxy p^t(y)$...(2.8)

Step3: Construction of cluster with the fuzzy memberships

(a) One-to-one object-cluster: select each object to the cluster that has the highest membership.

(b) One-to-multiple object-clusters: select each object to the cluster that has a membership higher than a threshold

Chapter

Literature review

Introduction

This chapter presents some previous research on intrusion detection systems and classifiers techniques applied in the IDS data. It presents algorithms used by IDS to reduce features space.

Anomaly Intrusion Detection System

Jyothsna and Prasad (2011) focused on operational architectures and several techniques in the anomaly intrusion detection system. Their classification depended on the behavior of the system. Among these techniques; statistical models, cognition models, machine learning based detection techniques, kernel based online anomaly detection, detection models that are based on computer immunology and models based on user intention were implemented. They presented major features of several intrusion detection systems platforms that are currently available.

Raut and Singh (2014) conducted a study concerned with an anomaly based intrusion detection system (ABIDS) and techniques. They showed a detailed several techniques of ABIDS, that are, statistical anomaly detection, data-mining, knowledge based and machine learning. Statistical anomaly is used statistical properties and it is classified into two types: operational model and marker model. Datamining detected known attacks and it is classified into clustering and classification. Knowledge based

detection collected knowledge about specific attacks and weakness in the system and then applied this knowledge to exploit the weaknesses of the attack and to generate alarms; it is classified as state transition analysis, expert system and signature analysis. The machine learning is based on learning system and performance improvement over time; it includes three categories: Neural Networks, Fuzzy Logic Approach and Support vector machines.

Intrusion Detection System With XCS

Shafi and Abbass (2006) evaluated XCS based on three principles; quantified performance, which is a fraction of the cases that are classified correctly and calculated through a window to exploit the trials (typically 50), the ratio optimal amount of population size, and the upper limited of exploitation paths. This research examined the issue of the standard three early stops on a subset of benchmark intrusion detection KDD99 data. They concluded that the smaller size of the population the better the accuracy and the less the computational cost because when they increased the size of the population it did not increase the accuracy. Also, they reduced the number of features from 41 to 29. The population of a size higher than 2000 came with an accuracy of 95%.

Alsharafat (2010) developed a model for intrusion detection system that comprises two phases; during the first-phase; a process to filter features is generated in order to select the best set of features for each implemented type of network

attacks by using artificial neural network (ANN). The second phase includes designing an ID by using an extended classifier system (XCS) with an internal classifier modification generator to obtain better detection rates (DR). The proposed model System can successfully and professionally detect attacks. R2L and U2R were spotted at low rate. This can denote the small number of records given to these attacks in KDD'99 dataset and test set. The detection rate for the ANN-XCS model was 98.01% with false-positive rate of 0. 9%.

A new method for intrusion detection system based on data mining and improved XCS was presented by **Panahi (2013)**; snort software was used with network intrusion detection system (NIDS). It included a named package listing as package record and other features. Numerous software is used for data mining in different fields. The fitness of the rules in XCS improves each rule for survival and participation in the production process associated with how it answers the training data. The results showed that the enhancement of XCS revealed a better detection rate that arrived to 94.83%, while snort got detection rate that arrived to 70.27%.

Yazdani and others (2013) improved the extended classifier system algorithm by using a new method. XCS was used to identify attacks on the databases. XCS was prepared and trained by using a set of existing examples and used reinforcement learning techniques to identify attempts conducted to intrude the databases and provided preventive incentives against them. The detection rate arrived at 91% for various types of known attacks to the databases.

Intrusion Detection system with Support Vector Machine, Neural Network

Shrivastava and Jain (2011) proposed a model for improving anomaly intrusion detection in order to gain a high detection level and a low false positive value based on using rough set which reduces features data set and SVM to test and train the data. The proposed model used only 6 out of 41 features. The model decreases CPU and memory utilization for the system and it is trusted in detecting intrusion. The accuracy of the proposed system is 95.98 % and a false-positive rate of 7.52%.

Tiwari (2013) generated a hybrid model for intrusion detection systems by using a firefly algorithm (FA) for feature selection a radial basis function (RBF) Neural Network which is a kind of three-layer feedforward neural network and a rough set theory which is a mean to deal with intelligent data analysis and data mining. The KDD99 dataset was used comprising 32 features and four types of attacks with DoS attack detection rate of 0.99, Probe detection rate of 0.98, R2L detection rate of 0.97 and U2R detection rate of 0.95.

Intrusion Detection System By Using Genetic Algorithm

Agravat and Rao (2011) used fuzzy Genetic-based Learning algorithms to detect intrusion in the network. They minimized fuzzy rules number and maximized classification rate. They used fuzzy Genetic Algorithm for Misuse Detection to be calculated and tested over KDD 99 dataset. 20 features along with

the 41 from KDD Cup 99 were used. In addition to that, they also used the parameters; A number of elite solutions = 20 %, crossover probability = 0.9, mutation probability = 0.1 and the number of generations = 50. The outcomes were of Precision = 0.9979, Recall = 1 and Accuracy = 0.985.

Kadam and Jadhav (2013) proposed a model for intrusion detection systems by using genetic algorithm as a model to produce rules for different types of inconsistent connections for intrusion detection system for improved accuracy and detection rate. The outcome showed that they used nine features, by using in the GA, Crossover probability = 0.8, mutation probability =0. 08. Detection rates normal attack = 81.25%, DOS attack = 97.80%, Probe attack = 76.12%, R2L attack = 23.00%, U2R attack = 30.70%, and detection rate arrived to 91.025%.

Pawar and Bichkar (2014) implemented a genetic algorithm for the intrusion detection rule generation that included different variables like; population size, selection, crossover and mutation along with six features. They concluded that the detection accuracy increases in intrusion detection system along with the population size increase. The results showed that, when using roulette wheel selection, two-point crossover with a crossover rate of 0.6 and uniform mutation with mutation rate of 0.01, highest detection accuracy of intrusion detection system can be detected with a value of 98%.

Danane and Parvat (2015) proposed a model by using a fuzzy algorithm and genetic algorithm for intrusion detection system. They aimed to achieve system improved accuracy, memory allocation and execution time for intrusion detection systems. The results showed that by using six feature and crossover probability of =0.8, mutation probability =0.088 and accuracy=0.98; KDD99 dataset is a point of reference dataset to implement a model.

Patel and Buddhadev (2015) implemented a method for predicting rule detection by using genetic algorithm (GA) to generate a rule base for intrusion detection systems. The method included two stages; using KDD Cup 99 dataset to generate the rule base in order to train the parameters (number of generations, mutation rate, and the probability of crossover). Then, it tests the system using this rule base and the KDD Cup 99 testing dataset. They are using one-point crossover and the probability of crossover = 0.7, mutation rate= 0.01 and detection rate = 98.7%.

Sasan and Sharma (2016) developed a hybrid model for IDS, where the model analyzed the behavior of network data depended on prior features and used the machine learning techniques with misuse detection. In the proposed model used 29 features with accuracy rate= 88.23%.

Chapter Methodology

Introduction

This chapter presents how to use our system and how to obtain the results. It displays the proposed model and explains the model details.

This research explains the improvement of the XSC for IDS and assess system performance by calculating the system DR and FAR.

A method for feature filtration by using FLAME and a modification of GA operation to reach optimal or most near optimal solutions will be presented in this study.

The proposed research mainly consists of two phases; selecting features using the FLAME algorithm in order to decrease the number of features, since some of the features are irrelevant and redundant, which results lengthy detection process and degrades the performance of an intrusion detection system (IDS) (MukherjeeSharma, 2012).

Using the CS in the selection; the genetic algorithm operates in an extended classifier system. In system evaluation level, two values are to be calculated; the DR and FAR. A strong system must possess high DR and low FAR. In this chapter, all phases will be discussed in details to explain the suggested enhancement.

Feature Filtration

The KDD'99 dataset comprises a set of 41 features each feature that is coming from a connection and a label that specifies the connection records' status as normal or specific

attack types. KDD'99 dataset is separated into training and testing data sets. The proposed system uses 10% of KDD'99 dataset because it does not occur Java heap. Training data are considered to be a condition part that grasps feature values and also as an action feature that holds the attack label.

FLAME is implemented to reduce features number of the dataset from a training dataset and select the best features by applying FLAME which is mention explained in chapter 3. FLAME clusters contain three main clusters:

- 1. Inner: an object with density higher than its neighbors.
- 2. Outer: an object with density lower than its neighbors and lower than a predefined threshold.
- 3. Rest: an object with a density that lies between the inner and the outer object and close to the threshold.

Proposed System Model

KDD 99 data set was used as an environment in this research. The following figure (4.1) displays component of the proposed system model XCS.

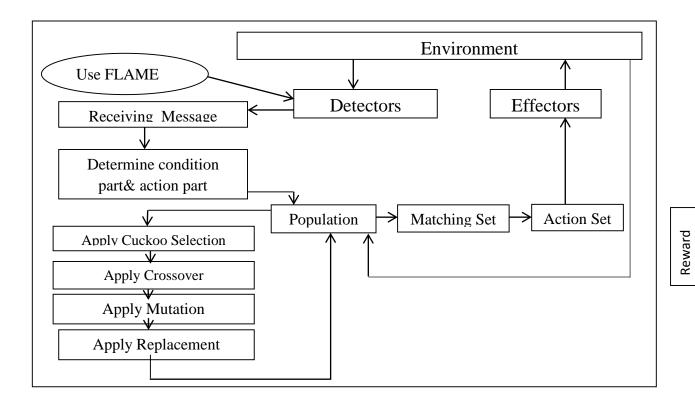


Figure 4.1: Proposed System Model XCS

Environment

The KDD'99 data set was used as an environment in this research; it contains 5 million records while each record comprises 41 features. KDD'99 divided it into two subsets; training dataset in which the system receives data and process and testing dataset that evaluates the system. In this research, we used a subset of training and test data set by applying 10% KDD'99 using 500000 records as training and 300000 records testing.

Detectors

The detector classified the data by receiving a message from an environment, then it represented the message in real representation. Every massage composed into

the condition and the action. Also, detectors filters the message from repetition and noise to obtain the most significant features by using FLAME.

Population

GA was used to generate new classifiers from existing classifiers. In this research, cuckoo search algorithm was implemented in the selection operator and dynamic probability for crossover and mutation for the GA parameters to produce the best generation of rule classifiers from existing classifiers. Host nests were represented as a population and each cuckoo egg was represented as a solution. CS is explained further in chapter 3.

The resulted rules after using CS selection in GA will be stored in rules pool in order to be used in the next step that examines the dataset testing. Here, CS was used for selection to achieve better results and using uniform crossover and random mutations. The following figure (4.2) displays the Pseudocode for GA and CS.

Start a New Generation:
1): Determine a population size.
2): Represent data using real representations.
For each population in the rule pool, do:
3): choose the chromosome by using cuckoo search for selection.
3.1): Generate a new set of solutions (host nests) but keep the
Current best (say, i) randomly by Lévy flights
incorporating with inertia weight, w, which controls the search ability
Evaluate new solution fitness <i>Fi</i> ;
Get a selected set of host nests among n (say, j) and
calculate its fitness <i>Fj</i> ,
if $(Fi > Fj)$
Replace j by the new set of solutions, i ;
End
A dynamic fraction probability, P_a of worse nests is
abandoned and a new nest (set of solution) is built;
Keep the best nests with quality solutions;
Let the best nests become as initial chromosomes;
Evaluate each individual's fitness;
Select pairs to the best ranked individuals;
4): Apply crossover
5): Apply mutation
6): Save the created rules
7): Go to the next population

Figure 4.2: Pseudocode Algorithm of Genetic Algorithm and Cuckoo Search

Figure: 4.2 Pseudocode for Genetic Algorithm and Cuckoo Search

Matching Set

At this stage of the proposed model; the researcher will try to match the condition part of classifiers received from an environment with the data identification existing rules.

Action Set

The set of classifiers in the matching set calls the action that is actually chosen. In the proposed work there are four actions where each action depends on the type of attack (DOS, Probe, R2L, U2R) and detect intrusions to be alerted.

Effectors

Firing the rule action to the environment; expected result can be normal, Probe, U2R, R2L or DOS.

Chapter

Experimental results and Evaluation

Introduction

This chapter focuses on introducing experimental results and the evaluation of the proposed work. Also, a comparative assessment with several researchers who presented experimental results that focus on IDS in a network environment is also presented.

This thesis presents the performance before reducing the 41 features and after the features were filtered. For performing experiments we used desktop computer Acer with core i7, 6.00 GB of RAM and hard disk 500GB, under windows 7 platform and eclipse LUNA for implementing JAVA.

Performance Measurements

In order to address the comparative assessment to specify which model will gain better results compared to others; a set of enhancements can be advised and critical issues can be denoted to obtain better results. Accordingly, different performance measures were used to judge proposed method's performance:

1- The Accuracy (AC)

It is the amount of the total correct predictions to the actual data set size. It can be determined by applying equation (1): (Elhamahmy et al. $\frac{20 \text{ hg}}{\text{TP}+\text{TN}+\text{FP}+\text{FN}}$... (5.1)

Where:

• True Positive (TP) is the amount of attack detected when it is actually attacked. (Gaidhane, et.al, 2014).

• True Negative (TN) is the amount of normal detected when it is actually normal.

• False Positive (FP) is the amount of attack detected when it is actually normal called in which it called a false alarm.

• False Negative (FN) is the amount of normal detected when it is actually attacked, namely the attacks which can be detected by an intrusion detection system.

2- Detection Rate (DR)

It can be defined as "the ratio between the number of correctly detected attacks and the total number of attacks" (Kumar, 2014).

As shown in equation (2):

$$DR = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}} \qquad \dots (5.2)$$

3- False Alarm Rate (FAR)

It can be defined as" the number of 'normal' patterns classified as attacks (False Positive) divided by the total number of 'normal' patterns" (Elhamahmy, et al., 2010). As shown in equation (3):

$$FAR = \frac{FP}{FP + TN} \qquad \dots (5.3)$$

To provide good judgment on the proposed work we compared his method results with different results from a set of previous studies that used an XCS to IDS.

These studies are:

1. The role of early stopping and population size in XCS for intrusion detection (Shafi, K., Abbass, et.al, 2006).

2. A fuzzy-genetic approach to network intrusion detection (Fries, T. P. ,2008).

3. Applying Artificial Neural Network and eXtended Classifier System for Network Intrusion Detection (Alsharafat Wafa, 2010).

4. Computer intrusion detection by two-objective fuzzy genetic algorithm (Agravat, M., and Rao, U. P. 2011).

5. Intelligent Detection of Intrusion into Databases Using Extended Classifier System (Yazdani, 2013).

6. Improved Detection of Intrusion to Computer Networks using Extended Classification Systems (Panahi, 2013).

7. A Novel Hybrid Model for Network Intrusion Detection (Tiwari, 2013).

8. An effective rule generation for Intrusion Detection System using Genetics Algorithm (Kadam, 2013).

9. Selecting GA Parameters for Intrusion Detection (Pawar, 2014).

10. Predictive Rule Discovery for Network Intrusion Detection (Patel, 2015).

11. Intrusion Detection System using Fuzzy Genetic Algorithm (Danane, 2015).

12. Intrusion detection using feature selection and machine learning algorithm with misuse detection (Sasan and Sharma, 2016).

Data Collection

To perform experimental results the KDD'99 dataset was used. The KDD'99 dataset comprises a set of 41 features; each feature is a result of a connection and a label specifying the status of connection records whether normal or specific attack type. KDD dataset includes training and testing record sets. The total number of connection records in the training dataset is about 5 million records (SJ, et al. 2011).

KDD 99 is the most suitable dataset benchmark of reference to be used in experiments. Various researchers have used KDD'99 to validate their results. In the scope of this study, 10% of KDD'99 will be used to train and test, which the 10% of KDD'99 represents a normal distribution of KDD'99 that consists of 500,000 network packets, each called a record. The records in the KDD '99 dataset, contain information about 41 network packets (Farid, et al., 2009) (Table 5.1).

Feature Number	Feature Name	Type (1)	Description
1	Duration	С	length (number of seconds) of the connection
2	Protocol type	D	type of the protocol, e.g. tcp, udp, etc.
3	Service	D	network service on the destination, e.g., http, telnet, etc.
4	Flag	D	normal or error status of the connection
5	Src_bytes	С	number of data bytes from source to destination

Dataset

6	Dst_bytes	С	number of data bytes from destination to source
7	Land	D	1 if connection is from/to the same host/port; 0 otherwise
8	Wrong fragment	С	number of ``wrong" fragments
9	Urgent	С	number of urgent packets
10	Hot	С	number of ``hot" indicators
11	Num_failed_logins	С	number of failed login attempts
12	Logged in	D	1 if successfully logged in; 0 otherwise
13	Num_compromised	С	number of ``compromised'' conditions
14	Root shell	С	1 if root shell is obtained; 0 otherwise
15	Su_attempted	С	1 if ``su root" command attempted; 0 otherwise
16	Num_root	С	number of ``root" accesses
17	Num_file_creations	С	number of file creation operations
18	Num_shell	С	number of shell prompts
19	Num_access_files	С	number of operations on access control files
20	Num_outbound_cmds	С	number of outbound commands in an ftp session
21	ls_host_login	D	1 if the login belongs to the ``hot" list; 0 otherwise
22	Is_guest_login	D	1 if the login is a ``guest" login; 0 otherwise
23	Count	C	number of connections to the same host as the current connection in the past two seconds
24	Srv_count	С	number of connections to the same service
25	Serror_rate	С	% of connections that have ``SYN" errors
26	Srv_serror_rate	С	% of connections that have ``SYN" errors

27	Rerror_rate	С	% of connections that have ``REJ'' errors
28	Srv_rerror_rate	С	% of connections that have ``REJ" errors
29	Same_srv_rate	С	% of connections to the same service
30	Diff_srv_rate	С	% of connections to different services
31	Srv_diff_host_rate	С	% of connections to different hosts
32	Dst_host_count	С	count for destination host
33	Dst_host_srv_count	С	srv_count for destination host
34	Dst_host_same_srv_rate	С	same_srv_rate for destination host
35	Dst_host_diff_srv_rate	С	diff_srv_rate for destination host
36	Dst_host_same_src_port_rate	С	same_src_port_rate for destination host
Feature Number	Feature Name	Type (1)	Description
37	Dst_host_srv_diff_host_rate	С	diff_host_rate for destination host
38	Dst_host_serror_rate	С	serror_rate for destination host
39	Dst_host_srv_serror_rate	С	srv_serror_rate for destination host
40	Dst_host_rerror_rate	С	rerror_rate for destination host
41	Dst_host_srv_rerror_rate	С	srv_serror_rate for destination host
42	Attack name	-	-
	ntinuous; D: Discrete.		

Experiments

Here, we divided the work into two experiments; at first; 41 features were used in the proposed

system model and then results were recorded. Furthermore; a FLAME features filtration algorithm was implemented to reduce the number of features from 41 to 20.

Experiment 1

Parameters Setting

In this study, a set of parameters must be determined before conducting experiments in terms of finding optimal or near optimal solutions. These parameters include:

- 1. Crossover Probability.
- 2. Mutation Probability.
- 3. A number of optimizations (Generation).
- 4. Number of solutions (Nests).
- 5. Abandoned Probability.

Crossover Probability

We used uniform crossover with different crossover probability. The experiment results are listed in Table 5.2. *

Note: * see Appendix A, Table5.

Table 5.2: Crossover Probability and Number of optimizations(Generation)

Crossover probability	DR%	ACC %	Number of optimizations (Generation)	Number of solutions (Nests)	Abandoned Probability
0.1	76.9695	69.2725	10	50	0.3
0.1	84.7100	76.2390	200	50	0.3
0.2	89.1802	80.2622	400	50	0.3
0.7	93.7005	84.3305	1000	50	0.3
0.9	82.1598	73.9438	100	50	0.3

The table (5.2) shows that high detection rate was arrived to 93.70, with an accuracy of 84.33. We obtained a high detection rate when the value of crossover is 0.7 and 1000 generations. The results also recorded when used 50 solutions (Nest) and the value of abandoned probability equal 0.3.

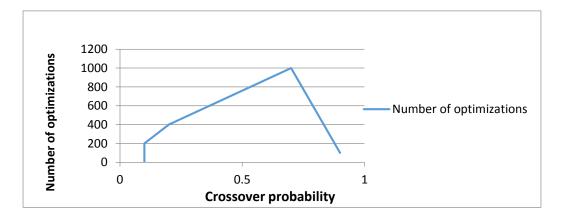


Figure (5.1): Crossover Probability and Number of optimizations (Generation)

The figure (5.1) shows that we acquired a DR when the value of crossover is 0.7 and 1000 generations.

Note: * see Appendix A, Table5.

5.4.1.1.2 Mutation Probability

We used a random mutation along with different mutation probabilities. The experiment showed that when number of generations increases, the DR and ACC are growing and becoming higher than others as listed in Table 5.3. *

Table 5.3: Mutation Probability and Number of optimizations(Generation)

Mutation probability	DR%	ACC%	Number of optimizations (Generation)	Number of solutions (Nests)	Abandoned Probability
0.1	82.1598	73.9438	100	50	0.3
0.1	84.7100	76.2390	200	50	0.3
0.1	93.7005	84.3305	1000	50	0.3
0.2	76.9695	69.2725	10	50	0.3
0.2	89.1802	80.2622	400	50	0.3

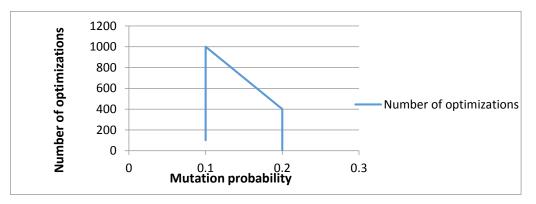


Figure (5.2): Mutation Probability and Number of optimizations (Generation)

The table(5.3) and Figure (5.2) shows that the highest DR was recorded is 93.70% with an ACC of 84.33% considering a p*m* within the value of 0.1 and 1000 generations accompanied with 50 solutions and an abandoned probability of 0.3.

Note: * see Appendix A, Table5.

Number of optimizations (Generation)

It is important to find the number of optimizations (Generations) for optimal solutions for an XCS for network intrusion detection.

In the thesis, the experiment showed that when the number of generations increases, the DR is growing and becomes higher than others. As shown in table 5.4. *

Table 5.4:Detection Rate with Number of optimizations (Generation)

Number of	DR%
optimizations(Generation)	
10	77.3235
20	79.4896
30	80.1989
50	81.4203
100	82.7026
150	84.5557
200	86.0793
250	86.4053
300	87.0433
400	88.9923
500	89.1066
1000	93.2519

The table (5.4) shows that high performance for DR is detected with high ACC when 1000 generations are imbedded with abandoned Probability=0. 3.

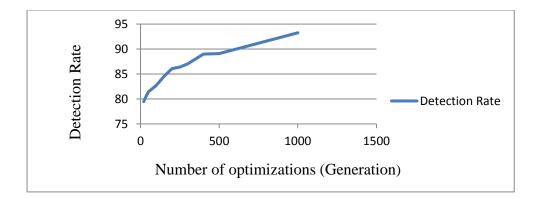


Figure (5.3): Detection Rate with Number of optimizations (Generation)

The results show that when increased the number of optimizations (Generation) the detection rate was increased and obtained high DR at 1000 generations as shown in figure (5.3).

Note: * see Appendix A, Table3.

Table 5.5: Accuracy with Number of optimizations (Generation)

Number of optimizations Generation)	ACC%
10	69.5911
20	71.5406
30	72.1790
50	73.2783
100	74.4323
150	76.1001
200	77.4713

250	77.7648
300	78.3390
400	80.0931
500	80.1959
1000	83.9267

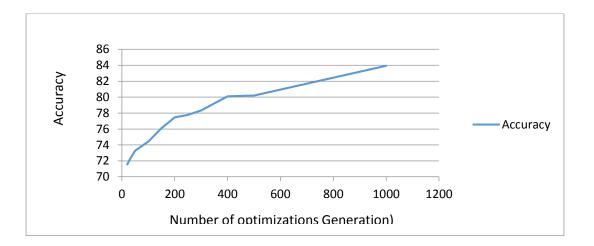


Figure (5.4): Accuracy with Number of optimizations (Generation)

When increased the number of optimizations (Generation) the ACC was increased and obtained high ACC around 83.92% with 1000 generations as shows in table(5.5) and figure (5.4).

Number of solutions (Nests)

The applied experiment showed that when the number of solutions increases the detection rate is growing and becomes higher than others. We can show results in Table (5.6). *

Note: * see Appendix A, Table5.

Number of	DR%
solutions	
(Nests)	
10	93.2519
50	93.0848
150	93.3457

Table 5.6: Detection Rate with Number of solutions (Nests)

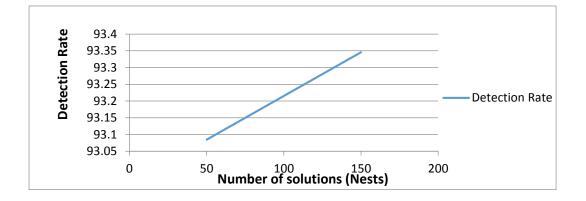


Figure (5.5): Detection Rate with Number of solutions (Nests)

The table (5.6) and figure(5.5) shows that when increased the number of solutions(Nests) the detection rate not affect, the values of detection rate around 93% and obtained a high detection rate at 1000 generations.

The experiment proves that when the number of solutions increases, the accuracy is growing and becomes higher than others (Table 5.7). *

Number (Nests)	of	solutions	ACC%
10			83.9267
50			83.7763
150			84.0111

Table 5.7: Accuracy with Number of solutions (Nests)

Note: * see Appendix A, Table (3,4,5).

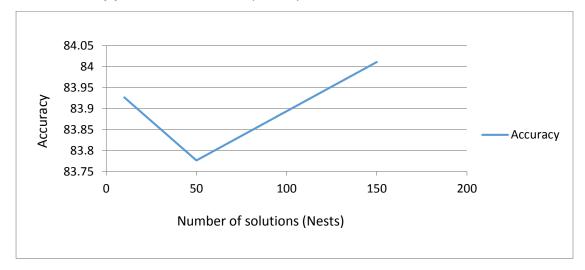


Figure (5.6): Accuracy with Number of solutions (Nests)

The results show that when increased the number of solutions(Nests) the ACC not affect, the values of ACC around 83% and obtained an accuracy rate at 150 solutions as shows in the table (5.7) and figure(5.6).

Abandoned Probability

In the scope of this study, the experiment showed that when the value of the abandoned probability was increase the DR is growing and becomes higher than others (Table 5.8).

Abandoned Probability	DR%
0.1	93.2823
0.2	93.0848
0.3	93.7005

Table 5.8: Detection Rate with Abandoned Probability

The table (5.8) shows that high performance for detection rate is recorded when abandoned Probability equals 0.3.

The experiment showed that when abandoned probability increases, the accuracy is growing and becomes higher than others (Table 5.9).

Table 5.9: Accuracy with Abandoned Probability

Abandoned Probability	ACC%
0.1	84.0111
0.2	83.7763
0.3	84.3305

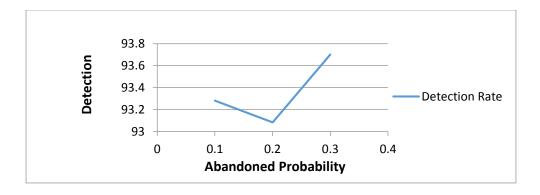


Figure (5.7): Detection Rate with Abandoned Probability

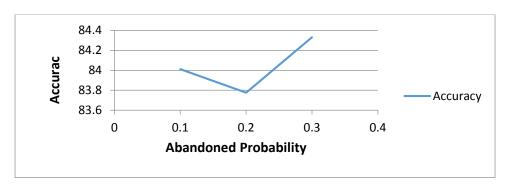


Figure (5.8): Accuracy with Abandoned Probability

The Table (5.9) and figure (5.7), (5.8) show that the values of the detection rate and accuracy increased small values when abandoned probability increased.

Experiment 2:FLAME Features Flirtation

We used FLAME within this study; FLAME is a clustering algorithm that defines clusters in the slow parts of a dataset and performs the cluster assignment solely based on the neighborhood relationships among objects.

The main characteristic of this algorithm is that the neighborhood relationships among neighboring objects in the feature space are applied to tighten up the memberships of neighboring objects in the fuzzy membership space.

In the proposed model; a set of parameters must be determined while conducting experiments to assure the finding of optimal or near optimal solutions; these parameters are:

- 1. Crossover Probability.
- 2. Mutation Probability.
- 3. Number of optimizations (Generation).
- 4. Number of solutions (Nests).
 - 5. Abandoned Probability.
 - 6. Number of features.

Crossover Probability

We used uniform crossover coupled with different values of crossover probabilities. The experiment (filtration features) showed that when the crossover probability increases, the detection rate and accuracy are growing and become higher than others as noted in Table (5.10). *

Note: * see Appendix B, Table 9.

Table 5.10: Crossover probability, Detection Rate, Accuracy and False alarm rate

Crossover probability	DR%	ACC%	FAR%
probability			
0.6	SY:	99.9180	0.0118
0.0	99.98815		0.0110
0.7	SY:	99.9015	0.0160
0.7	99.9839	99.9015	0.0160
• 9	SY:	99.8938	0.0040
*. \	99.9950	99.0930	0.0049

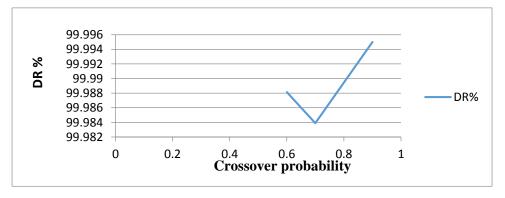


Figure (5.9): Crossover probability, Detection Rate

The table (5.10) and figure (5.9) shows that high performance for DR equal to 99.99 and accuracy equal to 99.89% when the crossover probability equal 0.9.

Mutation Probability

The researcher used random mutation with different mutation probabilities. The experiment (filtration features) showed that when a mutation probability is detected by a low value, the detection rate and accuracy are growing and become higher orders (Table 5.11). *

Note: * see and Appendix B, Table 9.

Table 5.11: Mutation probability, Detection Rate, Accuracy and False alarm

Mutation probability	DR%	ACC%	FAR%
0.1	SY: 99.9881	99.9180	0.0118
0.2	SY: 99.9839	99.9015	0.0160
۰.۳	SY: 99.99507	99.8938	0.0049

The table (5.11) shows that high performance of for DR equal 99.99% accompanied with an accuracy of 99.89% and FAR=0.0049% is detected when the mutation probability is equal to 0.3.

A Number of optimizations (Generation) / Number of Features

When using the FLAME algorithm the experiment showed that a number of optimizations decrease compared to the operation before using FLAME and the detection rate and accuracy are growing and become higher than others.

Also, the attacks were divided into four classes; DoS, R2L, U2R and Probe. The table 5.12 shows the attack types and sizes.

Table 5.12: Attack types and the sizes.

Attack Type	Size of Data
DOS	51%
Probe	28%
R2L	11%
U2R	8%
Normal	2%

Also, each attack class possesses a specific action as listed in Table 5.13.

Table 5.13: List of attacks (category wise)

Attack	DoS	R2L	U2R	Probe
class				
Attack	Back, land	ftp_write	buffer_overflow	ipsweep
Name	,Neptune, pod	,guess_passwd	,	,nmap
	smurf,teardrop	,imap ,multihop, phf	loadmodule,	portsweep
		spy, warezclient	perl rootkit	,satan
		,Warezmaster		

Each attack has its own features as follows. DoS attack specific features numbers and names are listed Table 5.14.

Features Selected	Feature Number
for	
DoS	1,2,14,9,10,11,8,20
Probe	12,7,3,4,23,24,21
U2R	13,5,25
R2L	6,22

Table 5.14: Features Selected for DoS, Probe, U2R, R2L attacks

The best detected values for the number of optimizations was correlated with high detection rates as listed in Tables (5.15, 5.16 and 5.17). *

Table 5.15:Number of optimizations, Detection Rate, Accuracy and False alarm rate for selected 18 features

Number of optimizations	DR%	ACC%	FAR%	Number of solutions (Nests)	Number of Selected Features	Index Features
10	DOS:99.9708	99.9708	0.0291	50	18	19,13 ,16,
	Probe:99.5604	87.0230	0.4395			41, 3 4, 2,
	R2L:72.2394	72.2394	27.7605			15, 9, 14, 17,
	U2R:99.9982	99.9982	0.0017			18, 1, 12, 11
	SY: 92.9422	89.8078	7.0577			33, 32, 27
100	DOS:99.9511	99.9511	0.0488	50	18	13, 16, 41,
	Probe: 98.0446	2.1895	1.9553			15, 3 4, 2, 9,
	R2L: 42.7044	32.5761	57.2955			14, 17, 19,
	U2R: 99.9873	99.9873	0.01269			20, 18, 1, 12
	SY: 85.1718	58.6760	14.8281			11, 33, 32

Table 5.15 shows that high performance value of 92.94 for detection rate correlates with an accuracy of 0.80% and false alarm rate of 7.06% considering a number of optimizations of 10.

Note: * see Appendix B, Table (6,7,8).

Table 5. 16: Number of optimizations, Detection Rate, Accuracy and False alarm rate for

selected 18 features

Number of optimizations	DR%	ACC%	FAR%	Number of solutions (nests)	Number of selected features	Index Features
10	DOS:49.9916	2.6998	50.0083	150	18	13,16,20,19 15,
	Probe:99.9999	99.9999	0.003			3, 4,2,9,41,14
	R2L: 51.8403	48.4227	48.1596			17,18,1,12,33,
	U2R: 99.9887	99.9887	0.01126			11,32
	SY: 75.4551	62.7778	24.5448			
100	DOS: 99.9940	99.9940	0.0059	150	18	13,16,2,3,4,19 20,15,9,14,17
	Probe:99.94171	99.6123	0.0582			
	R2L: 100.0	100.0	0.0			41,18,1,12,32
	U2R: 99.9999	99.9999	0.0051			33,11
	SY: 99.9839	99.9015	0.0160			
1000	DOS: 98.2817	98.2817	1.7182	150	18	3, 4, 2, 13, 16
	Probe:99.9428	99.0326	0.0571			15, 20, 19, 41,
	R2L: 99.9999	99.9999	0.0055]		9,14, 17,18, 1
	U2R: 99.9999	99.9999	0.0015]		12, 11, 32 ,33
	SY: 99.5561	99.3285	0.4438			

The table (5.16) shows that high performance of 99.98% for detection rate happens with an accuracy of 99.90% and false alarm rate equal of 0.016% when the number of optimizations is 100.

Table 5.17: Number of optimizations, Detection Rate, Accuracy and False alarm rate for

Selected 20 features

Number of optimizations	DR%	ACC%	FAR%	Number of solutions (nests)	Number of selected features	Index Features	
10	DOS: 99.9810	99.9810	0.0189	50	20	1, 2, 12, 13, 14, 9,	
	Probe:99.9878	98.6380	0.0121			10 11, 6, 7, 8, 3,	
	R2L: 100.0	100.0	۰.۰			4, 5, 23 24, 25,	
	U2R: 99.9999	99.9999	0.0291			20	20, 21, 22
	SY: 99.9922	99.6547	0.0077				
100	DOS: 99.9999	99.9999	0.0065	50	20	4, 5, 1, 2 ,3 ,14,	
	Probe:99.9813	99.7764	0.0186			15, 16, 11, 12,	
	R2L: 100.0	100.0	۰.۰			13, 9, 10, 6, 7, 8,	
	U2R: 99.9989	99.7990	0.00102			24, 25, 26, 22	
	SY: 99.9950	99.8938	0.00492				

Table 5.17 shows that high performance of 99.99% for DR corresponds to an ACC of 99.89% and FAR of 0.005% when the number of optimizations is 100.

Table 5.18: Number of optimizations, Detection Rate Accuracy, False alarm rate for

Number of optimizations	DR%	ACC%	FAR%	Number of solutions (nests)	Number of features	Index Features
10	DOS:99.9781	99.9781	0.02186	150	20	7, 8, 9, 4, 5, 6,2,
	Probe:99.9999	99.9999	0.0061			3, 1 19,
	R2L:99.9999	99.9999	0.0003			20,16,17,18,13
	U2R:99.9999	99.9999	0.0015			14,12,10, 11
	SY: 99.99453	99.9945	0.0054			
100	DOS:99.3223	92.2794	0.6776	150	20	32, 33, 34, 29,
	Probe:96.6375	95.1256	3.3624			30, 31, 27, 28,
	R2L: 99.9999	99.9999	0.0019			24, 25, 26, 41,
	U2R:99.9968	99.9968	0.0031			40, 38, 39, 35,
						36, 37, 1, 2

selected 20 features

	SY: 98.9891	96.8504	1.0108			
1000	DOS: 99.5469	70.9175	0.45308	150	20	19, 20, 21, 17,
	Probe:99.9945	99.6806	0.0054			18, 14, 15, 16,
	R2L: 100.0	100.0	۰.۰			11, 12, 13, 29,
	U2R:99.9695	99.8270	0.0304			30, 31, 27, 28,
	SY: 99.8777	92.6063	0.1222			24, 25, 26, 22

Table 5.18 shows that 99.98% high performance value for DR goes along with an ACC of 99.90% and FAR of 0.005% when the number of optimizations equals 100.

Table 5.19: Number of optimizations, Detection Rate, Accuracy and False alarm for selected 25 features

Number of optimizations	DR%	ACC%	FAR%	Number Of solutions (Nests)	Number Features	Index Features
10	DOS: 99.3206	89.9129	0.6793	50	25	38, 25, 37, 5,3, 4, 2 28,
	Probe:99.9999	99.9999	0.0047			20, 33, 32,35, 23 24,
	R2L: 99.9999	99.9999	0.0070			21,7,12,27,26,40
	U2R: 100.0	100.0	0.0			30,39, 29, 31, 36
	SY: 99.8301	97.4782	0.1698			
100	DOS: 99.9566	99.7570	0.0433	50	25	38, 25, 37, 5, 41, 28 33,
	Probe:99.9982	99.9175	0.0017			32,4,2,3,35,23
	R2L: 100.0	100.0	0.0	24,7,21,12,	24,7,21,12,20,27,26	
	U2R:99.9977	99.9977	0.0022			40,30,39,29,31
	SY: 99.9881	99.9180	0.0118			

Table (5.19) shows that a high performance of 99.98% for DR is accompanied with an ACC of 99.91% and 0.011% FAR when the number of optimizations is 100.

Table 5.20:Number of optimizations, Detection Rate, Accuracy, False alarm for

selected 25 features

Number of optimizations	DR%	ACC%	FAR%	Number of solutions (nests)	Number of selected features	Index features
10	DOS: 99.6214	93.3247	0.3785	150	25	38, 2, 25,37,
	Probe:99.8469	99.8469	0.1530			41,5,3,4,20,
	R2L: 100.0	100.0	0.0			28,33,21,32,
	U2R: 99.999	99.9996	0.00034			35,23,24,7,12,
	SY: 99.8670	98.2928	0.1329			27,26,40,30, 39,29,31
100	DOS: 99.9688	99.6859	0.0311	150	25	41,38,25,37,5,
	Probe:	99.8318	0.1348			4,2,3,28,21,
	99.8651					20,33,32,35,
	R2L: 99.99999	99.6770	0.0096			23,24,7,12,27,
	U2R: 99.9954	99.9954	0.0045			26,40,30,39
	SY: 99.95737	99.7975	0.0426			29,31
1000	DOS: 99.9958	99.9958	0.0041	150	25	38,25,37,5,41,
	Probe:99.8081	87.57000	0.1918			28,2,3,33,32,
	R2L: 99.9999	99.99993	0.0060	1		4,20,35,21,23,
	U2R: 99.9999	99.99998	0.0010]		24,7,12,27,26,
	SY: 99.95097	96.89143	0.04902			40,31,39,29, 30

Table (5.20) shows that high performance for DR equals 99.95% when the ACC equals 99.79% with FAR of 0.042% and a number of optimizations of 100.

Number of solutions (Nests)

The experiment applied in this study has proven that after using FLAME; a number of solutions the same value compared to solutions achieved before the implementation of FLAME in which the DR and ACC are growing and become higher than others. The best value obtained was for solutions number of 50 with variable feature numbers as listed in tables (5.21,5.22,5.23).*

Note: * see Appendix B, Table (6,7,8).

Table 5.21:Number of solution optimizations, Detection Rate, Accuracy and False alarm for selected 18 features

DR%	ACC%	FAR%	Number	Number	Index
			of	of	features
			solutions	selected	
			(Nests)	features	
DOS:99.9708	99.9708	0.0291	50	18	19,13,16,41
Probe:99.5604	87.0230	0.4395			3,4,2,15,9
R2L:72.2394	72.2394	27.7605			14,17,18,1
U2R:99.9982	99.9982	0.00176			12,11,33,32
SY: 92.9422	89.8078	7.05775			27
DOS: 99.99403	99.9940	0.00599	150	18	13,16,2,3,4
Probe:99.9417	99.6123	0.0582			19,20,15,9
R2L: 100.0	100.0	0.0			14,17,41,
U2R: 99.9999	99.9999	0.0051			18,1,12,32
SY: 99.98394	99.9015	0.0160			33,11

Table 5.21 shows that high performance for DR of 99.98% is found with an ACC of 99.91% and FAR of 0.016% when the number of solutions is 100 considering 18 features.

Table 5.22:Number of solution optimizations, Detection Rate, Accuracy and False alarm rate for selected 20 features

DR%	ACC%	FAR%	Number of solutions (nests)	Number of selected features	Index features
DOS: 99.9999	99.9999	0.0065	50	20	4,5,1, 2,3,
Probe:99.9813	99.7764	0.0186			14, 15 16,
R2L: 100.0	100.0	۰.۰			11, 12,13
U2R: 99.9989	99.7990	0.00102			,9 10, 6 ,7
SY: 99.9950	99.8938	0.00492			,8 ,24,25 26, 22

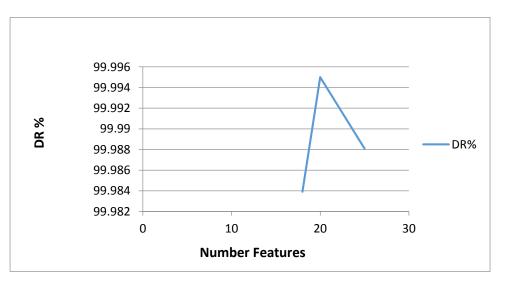
DOS:99.9781	99.9781	0.02186	150	20	7, 8, 9, 4,
Probe:99.9999	99.9999	0.0061			5, 6, 2 3, 1,
R2L:99.99999	99.9999	0.0003			19, 20, 16
U2R:99.99999	99.99999	0.0156			17, 18, 13,
SY: 99.994533	99.9945	0.00546			14, 12, 10,
					11, 15

Table 5.22 shows that high performance for DR is 99.99% when the ACC equals 99.89% with FAR of 0.005% and a number of solutions of 50 with 20 features.

Table 5.23:Number of solution optimizations, Detection Rate, Accuracy and False alarm for selected 25 features.

DR%	ACC%	FAR%	Number of solutions (Nests)	Number Features	Index Features
DOS: 99.9566	99.7570	0.0433	50	25	38, 25, 37, 5, 41,
Probe:99.9982	99.9175	0.00171			28, 33, 32, 4,2 3,
R2L: 100.0	100.0	0.0			35, 23, 24, 7 ,21,
U2R:99.9977	99.9977	0.00228			12 20, 27
SY: 99.9881	99.9180	0.01184			26, 40, 30 ,39, 29, 31
DOS: 99.9688	99.6859	0.0311	150	25	41, 38, 25, 37, 5, 4,
Probe:	99.8318	0.1348			2, 3, 28, 21 20, 33,
99.8651					32 ,35, 23, 24, 7,
R2L: 99.99999	99.6770	0.0096			12, 27 26, 40, 30,
U2R: 99.9954	99.9954	0.00455			39, 29, 31
SY: 99.9573	99.7975	0.04262			

Table 5.23 shows that high performance for DR equal to 99.98%, ACC equal to 99.91% and FAR equal to 0.011% when a number of solutions equal to 50 with 25 features.


63

roposed Solution System

In this thesis, the results prove that the proposed system model obtains the highest detection rate of 99.99 when the numbers of features equals 20 (Table 5.24).

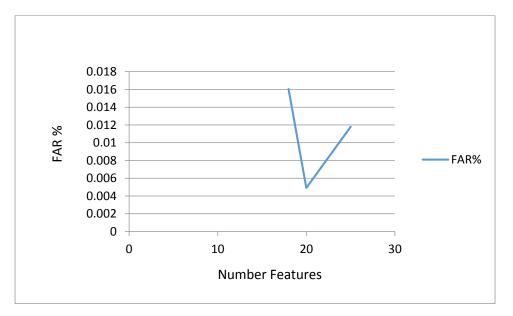
Number DR% **Index Features Features** 18 99.9839 13, 16, 2, 3, 4, 19, 20, 15, 9, 14, 17, 41, 18, 1, 12, 32, 33, 11 4, 5, 1, 2, 3, 14, 15, 16, 11, 12, 13, 20 99.9950 9, 10, 6, 7, 8, 24, 25, 26, 22 25 38, 25, 37, 5, 41, 28, 33, 32, 4, 2, 99.9881 3, 35, 23, 24, 7, 21, 12, 20, 27, 26, 40, 30, 39, 29, 31

Figure(5.10): Number features, Detection Rate

The results in table (5.24) and figure (5.10) prove that the proposed system model obtains the highest DR of 99.99% when the numbers of features equals 20.

The results also showed that the proposed system model achieves the highest ACC of 99.89% when the numbers of features is 20, as shows in Table (5.25).

Number Features	ACC%	Index Features
18	99.9015	13, 16, 2, 3, 4, 19, 20 , 15, 9, 14, 17 ,41, 18, 1, 12 ,32 ,33 11
20	99.8938	4, 5 ,1, 2, 3, 14 ,15, 16 ,11, 12 ,13, 9, 10, 6, 7 ,8 ,24 ,25, 26, 22
25	99.9180	38 ,25, 37, 5, 41, 28, 33, 32, 4, 2, 3, 35, 23, 24, 7, 21, 12, 20, 27, 26, 40, 30, 39, 29, 31


Table 5.25: Number Features and Accuracy

Furthermore, the results show that the proposed system model reaches its highest FAR value of 99.89% when the number of features is 20 as proven in Table (5.26).

Number	FAR%	Index
Features		Features
18	0.01605	13, 16, 2 ,3, 4 19 ,20, 15 ,9 ,14
		,17, 41, 18,
		1, 12, 32, 33, 11
20	0.00492	4, 5, 1, 2, 3, 14, 15, 16, 11, 12,
		13, 9, 10 ,6, 7, 8, 24, 25 ,26 ,22
25	0.0118	38, 25, 37, 5, 41, 28, 33, 32, 4,
		2, 3, 35, 23, 24, 7, 21, 12, 20,
		27, 26, 40, 30, 39, 29, 31

Table 5.26: Number Features, False alarm and Index Features.

Figure(5.11): Number Features, False alarm rate

The table (5.26) and figure (5.11) shows that the small value of FAR when used 20 features.

Finally, the results show that the proposed system model obtains its highest DR and ACC along with low FAR when the number of optimizations equals 100 with a number of solutions of 50 as shows in Table 5.27.

Number of optimizations	DR%	ACC%	FAR%	Number of solutions (nests)	Number of selected features	Index features
100	DOS: 99.9999	99.9999	0.0065	50	20	4, 5, 1
	Probe:99.9813	99.7764	0.0186			,2,3, 14
	R2L: 100.0	100.0	۰.۰			,15, 16,
	U2R: 99.9989	99.7990	0.00102			11, 12,
	SY: 99.9950	99.8938	0.00492			13, 9, 10
						6 ,7 ,8
						,24, 25
						,26 ,22

Table 5.27: Number of optimizations, Accuracy and False alarm rate

Impact Before and After Using the filtration (FLAME) process

When comparing the results before the of filtration when we used 41 features and After filtration; the features were reduced from 41 to 20. The effect posed by the implementation of FLAME algorithm is listed in Table (5.28).

Table 5.28: Parameters, Before filtration and After filtration (FLAME)

Parameters	Before	After filtration
	filtration	(FLAME)
Crossover Probability	0.7	0.9
Mutation Probability	0.1	0.3
Number of optimizations	1000	100
(Generation)		
Number of solutions(Nests)	50	50
Number Features	41	20
Detection Rate	93.7005%	99.9950%
Accuracy	84.3305%	99.8938%
False Alarm Rate	6.2994%	0.0049%

Table 5.28 shows that the crossover probability increased before the implementation of FLAME from 0.7 to 0.9 and the mutation probability increased from 0.1 to 0.3. FLAME implementation decreased the number of generations from 1000 to 100 which is better for the system with a DR range of 93.70% to 99.99% along with an ACC range from 84.33% to 99.89% and a low FAR range from 6.29% to 0.004%.

Comparative Study

A comparative study of several studies and this thesis' proposed method is presented in Table 5.29.

Table 5.29: comparative study of the methods, the number features and detection rate

Method	Number Features	DR%
Proposed work	20	99.99
Alsharafat, 2010 Artificial Neural Network (ANN) extended Classifier System	-	98.01
Panahi, 2013 Data mining and extended classification system	41	94.83
Yazdani, et.al, 2013 eXtended classifier systems (XCS)	-	91
Fries, Terrence P (2008) A fuzzy-genetic approach to network intrusion detection	8	99.6

Table 5.29 indicates that the DR of this proposed work got higher values compared to other studies .

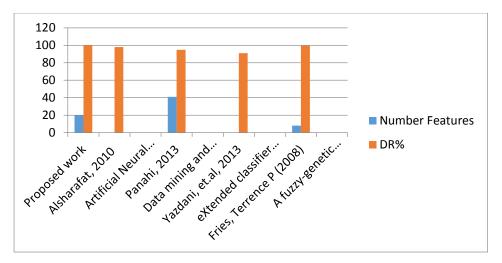


Figure (5.12): comparative study of the methods, the number features, detection rate

The figure (5.12) indicates that the DR of this proposed work got higher values compared to other studies.

Table 5.30: comparative study of the methods, the number features, accuracy

Method	Number Features	ACC%
Proposed work	20	99.89
Shafi, A. Abbass, 2006 The Role of Early Stopping and Population Size in XCS for Intrusion Detection.)	29	95
Agravat, Rao, (2011) fuzzy Genetic-based Learning algorithms	20	98.5

Table 5.30 indicates that the accuracy of this proposed work got higher values compared to other studies.

Shrivastava, Jain (2011) Rough Set Theory	6	95.98
and support vector machine		
Sasan and Sharma (2016) Intrusion detection	29	88.23
using feature selection and machine learning		
algorithm with misuse detection		

Table 5.31: Methods, Features Number, Detection Rate values for Each Type of Attacks

Method	Number Features	Detection Rate DOS %	Detection Rate Probe %	Detection Rate R2L %	Detection Rate U2R %
Proposed work	20	99.99	99.98	100	99.99
Alsharafat, 2010 Artificial Neural Network (ANN) extended Classifier System (XCS)	-	98.8	90.5	34.6	88.5
Te-Shun C., 2007, Ensemble Fuzzy Belief Intrusion Detection Design	-	99.86	95.52	0	0
Tiwari, 2013 Firefly algorithm (FA) feature selection, Radial basis function (RBF), Rough Set Theory	32	99.0	98.0	97.0	95.0

The table 5.31 shows that this proposed work achieves higher detection rates for each type of attacks. Tiwari (2013) study contains the nearest values of this proposed work. The better performance of Tiwari study was a result of the application of firefly algorithm and neural network, but, Tiwari used 32 features while this proposed work used 20features.

Table 5.32: Methods, Number Features and Accuracy of Each Type of Attacks.

Method	Number	ACC	ACC	ACC	ACC
	Features	DOS	Probe	R2L	U2R
		%	%	%	%
Proposed work	20	99.99	99.77	100.0	99.79
Eid, et.al (2010)	-	92.5	98.3	70.2	5.1
Principle Components					
Analysis and Support					
Vector Machine based					
Intrusion Detection					
System					

The Table 5.32 shows that this proposed work can obtain high accuracy rates for each type of attacks. Eid study applied the principle components analysis (PCA) with support vector machine (SVM). This proposed study has a higher accuracy rate for R2L attacks compared to Eid (2010), in which the accuracy rate for this study was 99% and it also obtained 70% accuracy rate. The U2R rate in this work equals 99% compared to 5.37% in Eid (2010) study.

72

Table 5.33 indicates that the crossover probability and the detection rate of this proposed work got higher values compared to other studies.

Method	Crossover probability	DR%
Proposed work	0.9	99.99
Kadam, Jadhav, 2013	0.8	91.025
Patel, Buddhadev, 2015	0.7	98.7

Table 5.33: Methods Crossover probability Detection rate

The Table 5.33 shows that this proposed work can obtain high detection rates with crossover probability 0.7 (41) features and when using FLAME the crossover probability 0.9 and 20 features compared to others Kadam, Jadhav, 2013study applied an effective rule generation for intrusion detection system using genetics algorithm. This proposed study has a higher detection rate 99.99% compared to Kadam, Jadhav (2013), in which the detection rate for this study was 91.025% and crossover probability 0.8 and it also obtained 98.7%% detection rate in Patel, Buddhadev, (2015) study with the crossover probability 0.7.

Table 5.34:Methods Mutation probability Detection rate

Method	Mutation probability pm	DR%
Proposed Work	0.3	99.99
Kadam, Jadhav,	0.88	91.025
2013		
Patel, Buddhadev,	0.01	98.7
2015		

The Table 5.34 shows that this proposed work can obtain high DR with mutation probability 0.1 (41) features and when using FLAME the mutation probability 0.3 (20) features compared to others Kadam, Jadhav, (2013) study applied an effective rule generation for intrusion detection system using genetics algorithm. This proposed study has a higher DR 99.99% compared to Kadam, Jadhav (2013), in which the DR for this study was 91.025% and mutation probability 0.088 and it also obtained 98.7%% DR in Patel, Buddhadev, (2015) study with the mutation probability 0.01.

Table 5.35: Methods Crossover probability Accuracy

Method	Crossover	ACC%	
	probability		
Proposed work	0.9	99.89	
Agravat, Rao, (2011)	0.9	98.5	
Fuzzy Genetic-based Learning algorithms			

Pawar, Bichkar, 2014	0.6	98
Selecting GA Parameters for Intrusion		
Detection		
Danane, Parvat, 2015	0.8	98
fuzzy - genetic algorithm		

The Table 5.35 shows that this proposed work can obtain high detection rates with crossover probability 0.7 (41) features and when using FLAME the crossover probability 0.9 (20) features compared to others. Agravat and Rao, (2011) study applied a Fuzzy Genetic-based Learning algorithms This proposed study has a higher ACC 99.89% compared Agravat and Rao, (2011), in which the ACC for this study was 98.5 % and crossover probability 0.9, it also obtained 98% Accuracy in Pawar, Bichkar, (2014) study with the crossover probability 0.6 and it also obtained 98% Accuracy in Danane, Parvat, (2015) study with the crossover probability 0.8.

Table 5.36: Methods Mutation probability Accuracy

Method			Mutation probability	ACC%
Proposed	work		0.3	99.89
Agravat, Rao, 2011		0.1	98.5	
Fuzzy	Genetic-based	Learning		
algorithms	3			

Pawar, Bichkar, 2014	0.1	98
Selecting GA Parameters for Intrusion		
Detection		
Danane, Parvat, 2015	0.088	98
fuzzy - genetic algorithm		

The Table 5.36 shows that this proposed work can obtain high DR with mutation probability 0 .1 (41) features and when using FLAME the mutation probability 0.3 (20) features compared to others. Agravat and Rao, (2011) study applied a Fuzzy Genetic-based Learning algorithms This proposed study has a higher ACC 99.89% compared Agravat and Rao, (2011), in which the ACC for this study was 98.5 % and mutation probability 0.1, it also obtained 98% ACC in Pawar, Bichkar, 2014 study with the mutation probability 0.01 and it also obtained 98% ACC in Danane, Parvat, 2015 study with the mutation probability 0.088.

Method	FAR%
Proposed work	0.0049%
Shrivastava, Jain (2011) Rough Set Theory and support vector machine	7.52%
Alsharafat, 2010	0.9%
Artificial Neural Network (ANN) extended Classifier System (XCS	

Fries, Terrence P (2008)	0.2%
A fuzzy-genetic approach to network intrusion	
detection	

Table 5.37 shows that the proposed work can obtain low false positive rate, 6.2994% when using 41 features and 0.0049% when using FLAME(20 features). Shrivastava, Jain (2011) study applied Rough Set Theory and support vector machine and get 7.52% FAR. Alsharafat, (2010) study ANN and (XCS) obtain FAR 0.9%. In Fries, Terrence P (2008) study applied A fuzzy-genetic approach to network intrusion detection get low value for FAR 0.2%.

Chapter

Conclusions and Future Work

Conclusions

The main outcome of this thesis is enhancing the extended classifier system by using the FLAME algorithm in the filtration process and using cuckoo search selection in the genetic algorithm.

Experimental results presented here clearly demonstrate the following successful properties of our enhanced model of intrusion detection system on KDD99 dataset.

1. The detection rate and accuracy have increased to reach about 99.89 % and false alarms decreased to reach about 0.0029 %.

2. The features were reduced from 41 to 20 by using FLAME.

Future Work

There are many improvements that can be considered as a future work aspect; such as:

1. Firefly algorithm implementation instead of FLAME.

2. Extension of recent studies to larger instances.

3. Using different types of crossovers as a single point or two points.

4. Adapting crossover probability depending on result performance.

5. Use an NSL-KDD dataset instead of 10% KDD99.

References:

- Agravat, M., and Rao, U. P. (2011), Computer intrusion detection by two-objective fuzzy genetic algorithm, First international conference on computer science engineering and application (CCSEA). July (15-17), Hyatt regency channai, india. Available at: http://airccj. org/CSCP/vol1/csit1226. pdf.
- Alabsi, F., and Naoum, R. (2012), Comparison of selection methods and crossover operations using steady state genetic based intrusion detection system, Journal of Emerging Trends in Computing and Information Sciences, 3(7), 1053-1058.
- Alsharafat, W. (2013), Applying Artificial Neural Network and eXtended Classifier System for Network Intrusion Detection, International Arab Journal of Information Technology (IAJIT), 10(3).
- Anderson, James P., Computer Security Threat Monitoring and Surveillance, James P. Anderson Co., Fort Washington, Pa., 1980.
- Barbakh, W. A., Wu, Y., & Fyfe, C. (2009), Non-standard parameter adaptation for exploratory data analysis, (Berlin: Springer Vol. 249).

- ensefia, H., and Ghoualmi, N. (2011), A new approach for adaptive intrusion detection, Computational Intelligence and Security (CIS), 2011 Seventh International Conference on (pp. 983-987). IEEE.
- Bernadó-Mansilla, E., & Garrell-Guiu, J. M. (2003), Accuracybased learning classifier systems: models, analysis and applications to classification tasks. Evolutionary computation, 11(3), 209-238.
- Bull, L., and Kovacs, T. (Eds.). (2005), Foundations of learning classifier systems, Springer Berlin Heidelberg, (Vol. 183).
 Available at: https://link.springer.com/book/10.1007%2Fb100387.
- Butz, M. V., Goldberg, D. E., Lanzi, P. L., and Sastry, K. (2007), Problem solution sustenance in XCS: Markov chain analysis of niche support distributions and the impact on computational complexity.In Butz, Goldberg, Lanzi, Sastry, Genetic Programming and Evolvable Machines, Volume 8, Issue 1, pp 5–37.

- Butzi, M. V., & Wilson, S. W. ,(2001), An Algorithmic Description of XCS. Soft Computing - October 2001
- Dam, H. H., Abbass, H. A., Lokan, C., and Yao, X. (2008), Neuralbased learning classifier systems, IEEE Transactions on Knowledge and Data Engineering, 20 (1), 26-39.
- Dam, H. H., Abbass, H. A. and Lokan, C. (2005), DXCS: An XCS system for distributed data mining, in H.-G. Beyer and U.-M. O'Reilly (Eds), GECCO, ACM, New York, NY, pp. 1883–1890.
- Danane, Y., and Parvat, T. (2015), Intrusion detection system using fuzzy genetic algorithm. In Pervasive Computing (ICPC), 2015 International Conference on(8-10 Jan. 2015) (pp. 1-5). IEEE.
- Elhamahmy, M. E., Elmahdy, H. N., and Saroit, I. A. (2010), A New Approach for Evaluating Intrusion Detection System, CiiT International Journal of Artificial Intelligent Systems and Machine Learning, 2 (11).
- Farid, D., Darmont, J., Harbi, N., Nguyen, H. H., & Rahman, M. Z. (2009). Adaptive network intrusion detection learning: attribute selection and classification. In International Conference on computer systems Engineering (ICCSE), (Dec. 2009, Bangkok, Thailand), (p. TH60000).

- Fries, T. P. (2008), A fuzzy-genetic approach to network intrusion detection. Proceedings of the 10th annual conference companion on Genetic and evolutionary computation (pp. 2141-2146). ACM, Atlanta, GA, USA July 12 16, 2008.
- Fu, L., and Medico, E. (2007), FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data, BMC Bioinformatics2007 (8:3), DOI: 10.1186/1471-2105-8-3

© Fu and Medico; licensee BioMed Central Ltd. 2007.Published: 4 January 2007.

- Gaidhane, R., Vaidya, C. and Raghuwanshi, M. (2014), Survey: Learning Techniques for Intrusion Detection System (IDS), International Journal of Advance Foundation and Research in Computer (IJAFRC) Volume 1, Issue 2, Feb 2014. ISSN 2348 – 4853.
- Goldberg, D. E. and Holland, J. H. (1988), Genetic algorithms and machine learning. Machine learning, in: Journal Machine Learning archive, volume 3, Issue 2-3, October 1988. Pages 95 – 99.
- Guerrero, M., Castillo, O., & García, M., (2015), Cuckoo Search Algorithm via Lévy Flight with Dynamic Adaptation of Parameter Using Fuzzy Logic for Benchmark Mathematical Functions. In Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization (pp. 555-571). Springer International Publishing.

- Hashem, S. H. (2013), Efficiency of Svm and Pca to enhance intrusion detection system, Journal of Asian Scientific Research, 3 (4), 381.
- Holmes, J. H., Lanzi, P. L., Stolzmann, W. and Wilson, S. W. (2002), Learning classifier systems: New models, successful applications, Information Processing Letters, Volume 82, Issue 1, 15 April 2002, Pages 23-30.
- Jyothsna, V., Prasad, V. R. and Prasad, K. M. (2011), A review of anomaly based intrusion detection systems, International Journal of Computer Applications (0975 – 8887), Volume 28– No.7, August 2011.
- Kadam, P. U. and Jadhav, P. P. (2013), An effective rule generation for intrusion detection system using genetics algorithm, International Journal of Science, Engineering and Technology Research (IJSETR), Volume 2, Issue 10, October 2013.
- Kamat, S. and Karegowda, Asha G., (2014), A Brief Survey on Cuckoo Search Applications, International Journal of Innovative Research in Computer and Communication Engineering, Volume.2, Special Issue 2, May 2014.
- Kavitha, P., and M. Usha., (2014), ANOMALY BASED INTRUSION DETECTION IN WLAN USING DISCRIMINATION ALGORITHM COMBINED WITH NAÏV

E BAYESIAN CLASSIFIER NAÏVE BAYESIAN CLASSIFIER, Journal of Theoretical & Applied Information Technology. 4/10/2014, Vol. 62 Issue 1, p77-84. 8p.

- Kosheleva, O., & Kreinovich, V. (2016), Why Locating Local Optima Is Sometimes More Complicated Than Locating Global Ones, University of Texas at El Paso 500 W. University
- Kumar, G. (2014), Evaluation Metrics for Intrusion Detection Systems-A Study, International Journal of Computer Science and Mobile Applications, Vol.2, Issue. 11, November 2014, pg. 11-17.
- Kumari, S. and Shrivastava, M. (2012). A study paper on IDS attack classification using various data mining techniques, International Journal of Advanced Computer Research, Volume-2, Number-3, Issue5, September-2012.
- Lanzi, P. L. (2008), Learning classifier systems: then and now.In Lanzi, Evolutionary Intelligence, March 2008, Volume 1, Issue 1, pp 63–82.
- Mitchell Melanie, (1999), An introduction to genetic algorithms, Cambridge, Massachusetts London, England, Fifth printing 3.
- Moghadasian, M. and Hosseini, S. P. (2014), Binary Cuckoo Optimization Algorithm for Feature Selection in High-Dimensional Datasets, International conference on Innovative Engineering Technologies (ICIET'2014), Dec. 28-29, Bangkok (Thailand), <u>http://dx.doi.org/10.15242/IIE.E1214027 18</u>.

- Mukherjee, S., & Sharma, N. (2012), Intrusion detection using naive Bayes classifier with feature reduction. Procedia Technology, 4, 119-128.
- Nadi, F. and Khader, A. T. (2011), A parameter-less genetic algorithm with customized crossover and mutation operators, GECCO '11 Proceedings of the 13th annual conference on Genetic and evolutionary computation, Pages 901-908.Dublin, Ireland- July 12 -16.
- Paliwal, S. and Gupta, R. (2012), Denial-of-service, probing & remote to user (R2L) attack detection using genetic algorithm, International Journal of Computer Applications, Volume 60– No.19, December 2012.
- Panahi, M. S., Yazdani, M., & Sequerloo, A. Y. (2013), Improved Detection of Intrusion to Computer Networks using Extended Classification Systems, Global Journal of Science, Engineering and Technology, issue 7, pp. 8-12.
- Patel, K. and Buddhadev, B. (2015), Predictive rule discovery for network intrusion detection. In Intelligent Distributed Computing, Springer International Publishing. (pp. 287-298).
- Pawar S.N, Bichkar R.S, (2014), Selecting GA Parameters for Intrusion Detection International Journal of Applied Information Systems (IJAIS). Volume 6–No.7, www.ijais.org.
- Raut, A. S. and Singh, K. R. (2014), Anomaly based intrusion detection-a review. International Journal on Network Security, Volume 5.

- Rehman, R. U. (2003), Intrusion detection systems with Snort: advanced IDS techniques using Snort, Apache, MySQL, PHP, and ACID, Prentice Hall Professional. PTR Upper Saddle River, New Jersey 07458, www.phptr.com.
- Richards, R. A. (1996), Zeroth-Order Shape Optimization Utilizing a Learning Classifier System, PhD thesis, Stanford University, ACM Digital Library.
- Roy, S., & Chaudhuri, S. S. (2013), Cuckoo search algorithm using Lévy flight: a review. International Journal of Modern Education and Computer Science, 5 (12), 10.
- Sampath, P. and Prabhavathy, M. (2015), Web Page Access Prediction Using Fuzzy Clustering By Local Approximation Memberships (FLAME) Algorithm, ARPN Journal of Engineering and Applied Sciences, Volume. 10, NO. 7, APRIL 2015.
- Sasan,H.P.S.,&Sharma,M.(2016), Intrusion detection usingfeature selection and machine learning algohrithm with misuse detection, International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 1.
- Shafi, K., Kovacs, T., Abbass, H. A. and Zhu, W. (2009), Intrusion detection with evolutionary learning classifier systems, Journal Natural Computing, volume 8,issue (1), pages 3-27.
- Shafi, K., Abbass, H. A. and Zhu, W. (2006), The role of early stopping and population size in XCS for intrusion detection. Asia-Pacific Conference on Simulated Evolution and Learning (pp. 50-57). Springer Berlin Heidelberg.

- Shrivastava, S. K. and Jain, P. (2011), Effective anomaly based intrusion detection using rough set theory and support vector machine, International Journal of Computer Applications, volume18-No (3), pages (35-41).
- Stolfo, S. J., Fan, W., Lee, W., Prodromidis, A., & Chan, P. K. (2011),Kdd cup 1999 data. 1999),http://kdd. ics. uci. edu/databases/kddcup99/kddcup99.html.
- Sigaud, O., & Wilson, S. W. (2007), Learning classifier systems: a survey, Soft Computing(A Fusion of Foundations, Methodologies and Applications), September 2007, Volume 11, Issue 11, pp 1065–1078.
- Tiwari, S., Roy, S. S., Charaborty, S., & Kumar, A. (2013), A novel hybrid model for network intrusion detection. In Green Computing, Communication and Conservation of Energy (ICGCE), 2013 International Conference on (pp. 685-688). 12-14 Dec. 2013, IEEE.
- Tzima, Fani., Psomopoulos, Fotis., Mitkas Pericles.(2009), Using the Grid to improve the effectiveness of Learning Classifier Systems through clustering-based initialization, Enabling grids for E-Science (EGEE).

- Valian, E., Mohanna, S., & Tavakoli, S., (2011), Improved cuckoo search algorithm for feed forward neural network training, International Journal of Artificial Intelligence & Applications (IJAIA), Vol.2, No.3, July 2011.
- Yang, X. S. and Deb, S. (2009), Cuckoo search via Lévy flights.
 Nature & Biologically Inspired Computing, 2009. NaBIC 2009.
 World Congress on (pp. 210-214). IEEE.
- Yao, J., Zhao, S. and Fan, L. (2006), An enhanced support vector machine model for intrusion detection, In: Wang GY., Peters J.F., Skowron A., Yao Y. (eds) Rough Sets and Knowledge Technology. RSKT 2006. Lecture Notes in Computer Science, vol 4062 pp 538-543. Springer, Berlin, Heidelberg,
- Yazdani, N. M., Panahi, M. S. and Poor, E. S. (2013), Intelligent Detection of Intrusion into Databases Using Extended Classifier System (XCS), International Journal of Electrical and Computer Engineering, Vol. 3, No. 5, October 2013, pp. 708-712.
- Zhao, S. (2007), Intrusion Detection Using the Support Vector Machine Enhanced with a Feature-weight Kernel, PhD Thesis. University of Regina, August 2007.

ملخص البحث

وفقا لتكنولوجيا المعلومات والاهتمام بثورات عالم الحاسوب،اصبح لهذا العالم ملفات ومعلومات وجب حمايتها من الهجمات المختلفة بأنواعها والتي تتسبب بإفسادها وتشويهها.لذلك ظهرت العديد من الخوارزميات لزيادة مستوى الحماية ولتكشف عن جميع أنواع الهجمات.

والهدف من هذه الرساله هو بناء نظام لاكتشاف الهجمات مدعم بالخوارزمية الجينينة، خوارزمية الواقواق وخوارزمية تجمع غامض من تقريب المحلي من الأعضاء (الشعلة).وهذه الخوارزميات استخدمت في البحث من اجل زيادة نسبة اكتشاف الهجمات ونسبة الدقة، وتقليل نسبة الانذار الخاطىء.

في هذه الرسالة تم تحسين الخوارزمية الجينية باستخدام خوارزمية الواقواق في اختيار أفضل الأفراد للتزواج.وأيضا استخدم خوارزمية تجمع غامض من تقريب المحلي من الأعضاء (الشعلة) التي عملت على تقليل الميزات الموجودة في النظام من ٤١ ميزة الى ٢٠. ولقد أثر ذلك على نظام اكتشاف الهجمات في الشبكات الحاسوبية بزيادة معدل اكتشاف الهجمات ليصبح ٩٩.٩ %، وتقليل معدل الانذارالخاطىء ليصبح ٢٠٠٠%.

Appendix

A-Results with use 41 features

Table 1: Detection Rate& Accuracy& Crossover Rate & MutationRate&Numberofoptimizations(Generation)Numberofsolutions(Nests) & Abandoned Probability

Detection	Accuracy	Cross	Mutati	Number	Numb	Abando
Rate		over	on	of	er of	ned
		Rate	Rate	optimizat	soluti	Probabi
				ions	ons	lity
				(Generati	(Nest	
				on)	s)	
76.17106525	68.55395872	0.9	0.1	10	50	0.1
294996	76549					
82.34584988	74.11126489	0.9	0.1	100	50	0.1
819766	937783					
84.82566367	76.34309731	0.9	0.1	200	50	0.1
934878	141393					
89.07239781	80.16515803	0.3	0.2	400	50	0.1
96026	764226					
93.28230243	83.95407218	0.1	0.1	1000	50	0.1
164012	847603					

Table 2: Detection Rate& Accuracy& Crossover Rate & MutationRate&Numberofoptimizations(Generation)Numberofsolutions(Nests) & Abandoned Probability

Detection Rate	Accuracy	Cross over Rate	Muta tion Rate	Number of optimiz ations (Genera tion)	Num ber of solut ions (Nest s)	Aband oned Proba bility
82.3967547 3661123	74.1570792 6295018	0.1	0.1	100	150	0.1
93.3457109 8208109	84.0111398 8387306	0.1	0.1	1000	150	0.1

Table 3: Detection Rate& Accuracy& Crossover Rate & MutationRate&Numberofoptimizations(Generation)Numberofsolutions(Nests) & Abandoned Probability

Detection	Accuracy	Cross	Muta	Number	Num	Aband
Rate		over	tion	of	ber	oned
		Rate	Rate	optimiz	of	Proba
				ations	solut	bility
				(Genera	ions	
				tion)	(Nest	
					s)	
77.3235468	69.5911921	0.1	0.2	10	10	0.2
787696	9089257					
79.4896449	71.5406804	0.7	0.1	20	10	0.2
0091558	1082398					
80.1989404	72.1790464	0.8	0.1	30	10	0.2
6779699	2101729					
81.4203930	73.2783537	0.4	0.5	50	10	0.2
2635756	2372184					
82.7026340	74.4323706	0.8	0.1	100	10	0.2
8026536	7223889					
84.5557517	76.1001765	0.7	0.1	150	10	0.2
6721572	9049419					

86.07930840986724	77.47137756888047	0.8	0.1	200	10	0.2
86.4053460272269	77.76481142450416	0.2	0.2	250	10	0.2
87.04333367517914	78.33900030766131	0.1	0.1	300	10	0.2
82.58572640930967	74.32715376837874	0.7	0.1	350	10	0.2
88.99237366163878	80.09313629547484	0.4	0.5	400	10	0.2
89.10665229461006	80.19598706514923	0.7	0.1	500	10	0.2
93.25196523688813	83.92676871319892	0.8	0.2	1000	10	0.2

Table 4: Detection Rate& Accuracy& Crossover Rate & MutationRate&Numberofoptimizations(Generation)Numberofsolutions(Nests) & Abandoned Probability

Detection	Accuracy	Cross	Mutati	Numb	Num	Aband
Rate		over	on	er of	ber	oned
		Rate	Rate	optimi	of	Proba
				zation	solut	bility
				S	ions	
				(Gener	(Nest	
				ation)	s)	
76.9529421	69.2576479	0.4	0.5	10	50	0.2
4382567	294431					
80.7891942	72.7102748	0.7	0.2	50	50	0.2
4502112	2051909					
82.4628263	74.2165437	0.9	0.1	100	50	0.2
549971	194974					
84.6767910	76.2091119	0.8	0.4	200	50	0.2
0186699	0168037					
88.3663361	79.5297025	0.8	0.1	300	50	0.2
437059	293354					
89.3534484	80.4181036	0.9	0.1	400	50	0.2
7040524	2336452					
93.0848656	83.7763790	0.8	0.1	1000	50	0.2
3435329	7091821					

Table 5: Detection Rate& Accuracy& Crossover Rate & MutationRate&Numberofoptimizations(Generation)Numberofsolutions(Nests) & Abandoned Probability

Detection Rate	Accuracy	Cross over Rate	Muta tion Rate	Number of optimiz ations (Genera	Num ber of solut ions	Aband oned Proba bility
				tion)	(Nest	
					s)	
76.9695525	69.2725973	0.1	0.2	10	50	0.3
8725104	2852595					
82.1598540	73.9438686	0.9	0.1	100	50	0.3
9391783	8452604					
84.7100511	76.2390460	0.1	0.1	200	50	0.3
7134138	5420724					
89.1802830	80.2622547	0.2	0.2	400	50	0.3
6457157	5811441					
93.7005732	84.33051596	0.7	0.1	1000	50	0.3
9358232	422385					

Detection Rate	Accuracy	False alarm Rate	Cross over Rate	Muta tion Rate	Number of optimiz ations	Num ber soluti ons (nest s)	Aband od proba bility	Num ber selec ted featu res	Inde x featu res
DOS:99.970817 25912615 Probe:99.56046 180515578 R2L:72.2394454 3709986 U2R:99.9982360 7955655 SY: 92.94224014523 458	99.97081725 912723 87.02303358 972252 72.23944543 70982 99.99823607 955615 89.80788309 137603	0.02918274087 3849866 0.43953819484 421786 27.7605545629 0014 0.00176392044 34516387 7.05775985476 5415	0.7	0.2	10	50	0.2	18	19 13 16 41 3 4 2 15 9 14 17 18 1 12 11 33 32 27
DOS: 9511150614305 7 Probe: 98.04461397580 66 R2L: 42.70446868598 1 U2R: 99.98730503322 898	99.95111506 143193 21.89514661 2564966 32.57612603 940215 99.98730503 322633	0.04888493856 942944 19.5538602419 34018 57.2955313140 19 0.01269496677 102211	0.7	0.1	100	50	0.2	18	13 16 41 15 3 4 2 9 14 17 19 20 18 1 12 11 33 32

Table 6:Results with use FLAME when reduce 41 featuresfeatures

58.67601519882923	14.828124310888214							
2.699863934890074	50.008370854654565	0.2	0.2	10	150	0.2	18	13 16 20
99.999999999999999	0.000000000003							19 15 3 4 2
48.42277299020295	48.15963605320059							9 41 14 17
99.98873355889812	0.011266441100431734							18 1 12 33 11 32
62.77784262099774	24.544818337238905							11 32
99.99400044036338	0.005999559635569085	0.7	0.2	100	150	0.2	18	13 16 2 3 4
99.61232629827805	0.05820345629489054							19 20
100.0	0.0							15 9 14 17
99.99999994921832	0.0000005078095							41 18
99.90158167196493	0.016050766677853545							1 12 32 33
								11
98.28175284366242	1.7182471563382649	0.9	0.3	1000	150	0.2	18	3 4 2 13
99.03265847288722	0.0571204775989429							16 15 20
99.99999999945463	0.0000000054541							19 41 9 14
99.99998553746003	0.00001446254261							17 18 1 12 11 32
99.32859921336608	0.4438455242563073							33
	9.999999999999999999999999999999999999	9.999999999999997 0.0000000000003 8.42277299020295 48.15963605320059 9.98873355889812 0.011266441100431734 2.77784262099774 24.544818337238905 9.99400044036338 0.005999559635569085 9.61232629827805 0.05820345629489054 00.0 0.0 9.99999994921832 0.0000005078095 9.90158167196493 0.016050766677853545 8.28175284366242 1.7182471563382649 9.03265847288722 0.0571204775989429 9.9999999945463 0.00000054541 9.99998553746003 0.00001446254261	9.99999999999999999 0.00000000000003 8.42277299020295 48.15963605320059 9.98873355889812 0.011266441100431734 2.77784262099774 24.544818337238905 9.99400044036338 0.005999559635569085 9.61232629827805 0.05820345629489054 00.0 0.0 9.999999994921832 0.0000005078095 9.90158167196493 0.016050766677853545 8.28175284366242 1.7182471563382649 9.9999999945463 0.000000054541 9.9999999945463 0.000000054541	9.9999999999999999 0.0000000000003 8.42277299020295 48.15963605320059 9.98873355889812 0.011266441100431734 2.77784262099774 24.544818337238905 9.99400044036338 0.005999559635569085 9.61232629827805 0.05820345629489054 00.0 0.0 9.999999994921832 0.0000005078095 9.90158167196493 0.016050766677853545 8.28175284366242 1.7182471563382649 9.03265847288722 0.0571204775989429 9.999999945463 0.00000054541 9.9999999945463 0.00001446254261	9.99999999999999999999999999999999999	9.999999999999999 0.00000000000003 8.42277299020295 48.15963605320059 9.98873355889812 0.011266441100431734 2.77784262099774 24.544818337238905 9.99400044036338 0.005999559635569085 0.7 9.61232629827805 0.05820345629489054 0.7 0.0 0.0 0.0 9.999999994921832 0.0000005078095 9.90158167196493 0.016050766677853545 8.28175284366242 1.7182471563382649 9.9999999945463 0.000000054541 9.9999999945463 0.00000054541 9.999998553746003 0.00001446254261	9.9999999999999997 0.00000000000003 8.42277299020295 48.15963605320059 9.98873355889812 0.011266441100431734 2.77784262099774 24.544818337238905 9.99400044036338 0.005999559635569085 9.61232629827805 0.05820345629489054 00.0 0.0 9.9999999994921832 0.00000005078095 9.90158167196493 0.016050766677853545 8.28175284366242 1.7182471563382649 9.99999999945463 0.00000054541 9.99999999945463 0.000000054541 9.99999999945463 0.000000054541	9.999999999999999 0.0000000000000003 8.42277299020295 48.15963605320059 9.98873355889812 0.011266441100431734 2.77784262099774 24.544818337238905 9.99400044036338 0.005999559635569085 9.61232629827805 0.05820345629489054 00.0 0.0 9.999999994921832 0.00000005078095 9.90158167196493 0.016050766677853545 8.28175284366242 1.7182471563382649 9.03265847288722 0.0571204775989429 9.99999999495463 0.000000054541 9.9999999945463 0.00001446254261

Table 7: Results with use FLAME when reduces 41 features to 20features

Detection Rate	Accuracy	False alarm rate	Crossover Rate	Mutation Rate	Number	Number	Abandod	Number	Index
					of optimizations	of solutions	probability	of	features
						(nests)		selected	
						· · /		features	
DOS: 99.98108257246632	99.98108257246427	0.018917427533679643	•.V	۰.۲	10	50	0.2	20	1 2 12 13 14 9
Probe:99.98787763742045	98.6380766127519	0.012122362579546575							10 11 6 7 8 3 4
R2L: 100.0	100.0	•.•							5 23 24
U2R: 99.99999999970848	99.99999999970848	0.0000000029152							25 20 21 22
SY: 99.99224005239881	99.65478979623117	0.007759947601186923							
DOS: 99.99999349373618	99.99999349373464	0.0000065062638	۰.۹	•."	100	50	0.2	20	4 5 1 2 3 14 15 16
Probe:99.98134485898316	99.7764128349597	0.01865514101684							11 12 13 9
R2L: 100.0	100.0	•.•	1						10 6 7 8 24 25 26
U2R: 99.99897894356474	99.79909996170952	0.00102105643526329							22 22
SY: 99.99507932407101	99.89387657260096	0.004920675928978824							
DOS:99.97813394203983	99.97813394203986	0.021866057960167495	۰.٩	•.٣	10	150	0.2	20	78945
Probe:99.99999999939402	99.9999999993941	0.0000000060598							6 2 3 1 19 20 16
R2L:99.999999999999997	99.999999999999999	0.0000000000003							17 18 13 14 12 10
U2R:99.99999984343604	99.99999984343458	0.00000015656396							11 15
SY: 99.99453344621747	99.99453344621713	0.00546655378253							
DOS:99.32230447891503	92.2794683111128	0.6776955210849707	•.٦	• <u>.</u> ۲	100	150	0.2	20	32 33 34 29 30
Probe:96.63754913897897	95.1256827815545	3.3624508610210313							31 27 28
R2L: 99.9999999802037	99.99999999802037	0.0000000197963							24 25 26 41 40 38
U2R:99.99683516815448	99.99683516815216	0.0031648318455239632							39 35 36 37 1 2
SY: 98.98917219601721	96.85049656470996	1.0108278039827887							
DOS: 99.54691143791901	70.91758275704537	0.4530885620809926	•. ٧	•.1	1000	150	0.2	20	19 20 21
Probe:99.99458060339744	99.6806625738286	0.005419396602562188							17 18 14 15
R2L: 100.0	100.0	•.•	1						16 11 12 13 29 30
U2R:99.96957854655608	99.82703817778747	0.03042145344392111	1						31 27 28 24
SY: 99.87776764696812	92.60632087716536	0.12223235303186897	1						25 26 22

Table8:Results with use FLAME when reduce 41 features to 25

features

Detection Rate	Accuracy	False alarm rate	Crossov er Rate	Mutatio n Rate	Number optimizatio n	Numbe r solutio ns	Abandod probabilit y	Numbe r feature s	Index feature s
DOS:99.3 20687167 38982	89.912992483 45081	0.679312 8326101 794	0.8	0.1	10	50	.2	25	38 25 37 5 3 4 2 28
Probe:99.9 99995310 31938	99.999995310 31972	0.000004 6896806 2							20 3332 3523 24
R2L:99.99 99999993 045	99.9999999999 30448	0.000000 0006955							21 7 12 27 26 40
U2R: 100.0	100.0	0.0							30 39 29 31
SY:99.830 17061925 342	97.478246948 26875	0.169829 3807465 7383							36
DOS: 99.956615 53427595	99.757064563 64343	0.043384 4657240 4564	0.6	0.1	100	50	.2	25	38 25 37 5 41 28 33
Probe:99.9 98284692 81412	99.917543910 1758	0.001715 3071858 757585							32 4 2 3 35 23 24 7 21
R2L: 100.0 U2R:99.99	100.0 99.997712853	0.0							12 20 27 26
77128539 2545	92632	1460745 506056							40 30 39 29 31
SY:99.988 15327025 389	99.918080331 93638	0.011846 7297461 18001							51
DOS:99.6 21479994 52029	93.324734110 66506	0.378520 0054797 144	0.7	.3	10	150	.2	25	38 2 25 37 41 5 3 4 20
Probe:99.8 46920909 60385	99.846920909 60372	0.153079 0903961 4742							28 33 21 32 35 23
R2L: 100.0 U2R:99.99 96546639	100.0 99.999654663 9847	0.0 0.000345 3360164							24 7 12 27 26 40 30
8353 SY:99.867 01389202	98.292827421 06338	7 0.132986 1079730							39 29 31
692	00000	8186							

DOS:99.9	99.685907970	0.031103	0.8	0.2	100	150	.2	25	41 38
68896894	29765	1051739							25 37 5
82606		4055							4 2 3
Probe:99.8	99.831866168	0.134839							28 21
65160201	5192	7982417							20 33
7582		9926							32 35
R2L:99.99	99.677028663	0.000000							23
99999999	71445	0000096							24 7 12
904									27 26
U2R:99.99	99.995440257	0.004559							40 30
54402578	89153	7421064							39 29
9355		51381							31
SY:99.957	99.797560765	0.042625							
37433861	1057	6613829							
706		4943							
DOS:99.9	99.995807189	0.004192	0.8	.1	1000	150	.2	25	38 25
95807189	10435	8108951							37 5 41
10482		76535							28 2 3
Probe:99.8	87.570008548	0.191842							33 32 4
08157728	27943	2711993							20 35
80068		2018							21 23
R2L:	99.999939498	0.000060							24 7 12
99.999939	91255	5010877							27 26
49891228		2							40 31
U2R:	99.999989658	0.000010							39 29
99.999989	57971	3414209							30
65857905		5							
SY:	96.891436223	0.049026							
99.950973	71901	4811507							
51884921		8989							

Table9:Results with use FLAME when reduce 41 features to

18/20/25 features

Detection Rate	Accuracy	False alarm rate	Crosso ver Rate	Mutati on Rate	Number optimizati ons	Numb er solutio ns	Aband od probabi lity	Numb er select ed featur es	Index feature s
DOS: 99.994000 44036443 Probe:99. 94179654 370511 R2L: 100.0 U2R: 99.999999 94921905 SY: 99.983949 23332215	99.99400 0440363 38 99.61232 6298278 05 100.0 99.99999 9949218 32 99.90158 1671964 93	0.0059995 596355690 85 0.0582034 562948905 4 0.0 0.0000000 5078095 0.0160507 666778535 45	0.7	0.2	100	150	0.2	18	13 16 2 3 4 19 20 15 9 14 17 41 18 1 12 32 33 11
DOS: 99.999993 49373618 Probe:99. 98134485 898316 R2L: 100.0 U2R: 99.998978 94356474 SY: 99.995079 32407101	99.99999 3493734 64 99.77641 2834959 7 100.0 99.79909 9961709 52 99.89387 6572600 96	0.0000065 062638 0.0186551 4101684 0.0010210 564352632 9 0.0049206 759289788 24	•.9	•.٣	100	50	0.2	20	4 5 1 2 3 14 15 16 11 12 13 9 10 6 7 8 24 25 26 22
DOS: 99.956615 53427595 Probe:99. 99828469 281412 R2L: 100.0 U2R:99.99 77128539 2545 SY: 99.988153 27025389	99.75706 4563643 43 99.91754 3910175 8 100.0 99.99771 2853926 32 99.91808 0331936 38	0.0433844 657240456 4 0.0017153 071858757 585 0.0 0.0022871 460745506 056 0.0118467 297461180 01	0.6	.1	100	50	0.2	25	38 25 37 5 41 28 33 32 4 2 3 35 23 24 7 21 12 20 27 26 40 30 39 29 31 31 31

